Skip to main content

Advertisement

Log in

Geochemical interactions between iron and phenolics originated from peatland in Hani, China: implications for effective transport of iron from terrestrial systems to marine

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Iron is a restrictive element for primary productivity in the oceans. The influence of dissolved organic matters as metal chelators on the bio-available iron input to the ocean has been widely reported. However, natural dissolved organic matters, especially the phenolics originated from peatlands and geochemical interactions with iron remains poorly understood. In this study, solid phase extraction-high performance liquid chromatography experiments were conducted to determine the vertical distributions of phenolic acids in different peat layers in Hani Peatland, China. Ten phenolic acids, including protocatechuic acid, p-hydroxybenzoic acid, gentisic acid, caffeic acid, etc. were detected. Simulation experiments of phenolics-Fe interactions under alkaline conditions (pH = 8.0 ± 0.1) indicated phenolic acids bearing either catechol or galloyl groups (such as protocatechuic acid, caffeic acid and gallic acid) could chelate iron to produce relatively stable phenolics-Fe complexes and therefore help to weaken its precipitation in the oxidative condition. In addition, the simulation experiments with artificial coastal waters demonstrated that this complexation could ensure that at least 25 % of the initial Fe load dissolve in coastal water, implying large part of dissolved iron in rivers draining from peatlands could be transported through the estuarine zones. Considering the wide distribution of peatlands globally, the higher concentration of Fe in peatlands, and the enhancement of marine organisms by Fe, the geochemical interactions between iron and phenolics originated from peatlands are of important significance to transport bio-available iron from terrestrial system to oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achilles KM, Church TM, Wilhelm SW, Luther GW, Hutchins DA (2003) Bioavailability of iron to Trichodesmium colonies in the western subtropical Atlantic Ocean. Limnol Oceanogr 48(6):2250–2255. doi:10.4319/lo.2003.48.6.2250

  • Andjelković M, Van Camp J, De Meulenaer B et al (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98(1):23–31. doi:10.1016/j.foodchem.2005.05.044

    Article  Google Scholar 

  • Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617. doi:10.1126/science.1131669

    Article  Google Scholar 

  • Dai M-H, Martin J-M (1995) First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth Planet Sci Lett 131:127–141

    Article  Google Scholar 

  • Djurdjevi L, Dini A, Mitrovi M, Pavlovi P, Teaevi V (2003) Phenolic acids distribution in a peat of the relict community with Serbian spruce in the Tara Mt. forest reserve (Serbia). Eur J Soil Biol 39:97–103. doi:10.1016/s1164-5563(03)00015-3

    Article  Google Scholar 

  • Falkowski P et al (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Article  Google Scholar 

  • Figuères G, Martin JM, Meybeck M (1978) Iron behaviour in the Zaire estuary. Neth J Sea Res 12:329–337. doi:10.1016/0077-7579(78)90035-2

    Article  Google Scholar 

  • Forsgren G, Jansson M, Nilsson P (1996) Aggregation and sedimentation of iron, phosphorus and organic carbon in experimental mixtures of freshwater and estuarine water. Estuar Coast Shelf Sci 43:259–268. doi:10.1006/ecss.1996.0068

    Article  Google Scholar 

  • Friedman M, Jürgens HS (2000) Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem. doi:10.1021/jf990489j

    Google Scholar 

  • Gajewski K, Viau A, Sawada M et al (2001) Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Global Biogeochemical Cycles 15(2):297–310. doi:10.1029/2000GB001286

  • Graham TL (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95:594–603

    Article  Google Scholar 

  • Harwood CS, Parales RE (1996) The 2-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  Google Scholar 

  • Hider R, Liu Z, Khodr HH (2001) Metal chelation of polyphenols. Elsevier Academic Press Inc, San Diego, pp 190–203

  • Huang T, Cheng SG, Mao XM (2013) Humification degree of peat and its implications for holocene climate change in hani peatland, northeast china. Chin J Geochem 32(4):406–412. doi:10.1007/s11631-013-0649-8

  • Khokhar S, Owusu Apenten RK (2003) Iron binding characteristics of phenolic compounds: Some tentative structure-activity relations. Food Chemistry 81(1):133–140. doi:10.1016/S0308-8146(02)00394-1

  • Krachler R, Jirsa F, Ayromlou S (2005) Factors influencing the dissolved iron input by river water to the open ocean. Biogeosciences 2:311–315. doi:10.5194/bg-2-311-2005

    Article  Google Scholar 

  • Krachler R et al (2010) Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean. Sci Total Environ 408:2402–2408. doi:10.1016/j.scitotenv.2010.02.018

    Article  Google Scholar 

  • Kracheler R et al (2015) River-derived humic substances as iron chelators in seawater. Mar Chem 174:85–93

    Article  Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13. doi:10.1029/PA005i001p00001

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north–east Pacific subarctic. Nature 331:341–343

    Article  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158

    Article  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802. doi:10.1126/science.283.5403.757i

    Article  Google Scholar 

  • Matsunaga K, Nishioka J, Kuma K, Toya K, Suzuki Y (1998) Riverine input of bioavailable iron supporting phytoplankton growth in Kesennuma Bay(Japan). Water Res 32:3436–3442

    Article  Google Scholar 

  • Mayer LM (1982) Aggregation of colloidal iron during estuarine mixing: kinetics, mechanism, and seasonality. Geochimica Et Cosmochimica Acta 46(12):2527–2535. doi:10.1016/0016-7037(82)90375-1

    Article  Google Scholar 

  • Moore RM, Burton JD, Williams PL, Young ML (1979) The behaviour of dissolved organic material, iron and manganese in estuarine mixing. Geochim Cosmochim Acta 43:919–926

    Article  Google Scholar 

  • Naumova GV, Tomson AE, Zhmakova NA, Makarova NL, Ovchinnikova TF (2013) Phenolic compounds of sphagnum peat. Solid Fuel Chem 47:22–26. doi:10.3103/s0361521912060092

    Article  Google Scholar 

  • Pannala AS, Chan TS, O’Brien PJ, Rice-Evans CA (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics 282(5)

  • Philben M, Kaiser K, Benner R (2014) Biochemical evidence for minimal vegetation change in peatlands of the West Siberian Lowland during the medieval climate anomaly and little ice age. J Geophys Res Biogeosci 119(808–825):2014. doi:10.1002/2013jg002396

    Google Scholar 

  • Poulton SW, Raiswell R (2005) Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem Geol 218(3):203–221. doi: 10.1016/j.chemgeo.2005.01.007

    Article  Google Scholar 

  • Powell RT, Landing WM, Bauer JE (1996) Colloidal trace metals, organic carbon and nitrogen in a southeastern US estuary. Mar Chem 55:165–176. doi:10.1016/s0304-4203(96)00054-0

    Article  Google Scholar 

  • Powell RT, Wilson-Finelli A (2003) Importance of organic Fe complexing ligands in the Mississippi River plume. Estuar Coast Shelf Sci 58:757–763. doi:10.1016/s0272-7714(03)00182-3

    Article  Google Scholar 

  • Raiswell R (2006) Towards a global highly reactive iron cycle. J Geochem Explor 88(1):436–439. doi:10.1016/j.gexplo.2005.08.098

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rose AL, Waite TD (2003) Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar Chem 84:85–103. doi:10.1016/s0304-4203(03)00113-0

    Article  Google Scholar 

  • Rubin M, Berman-Frank I, Shaked Y (2011) Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium 4(8)

  • Saitoh Y et al (2008) Processes influencing iron distribution in the coastal waters of the Tsugaru Strait. Jpn J Oceanogr 64:815–830. doi:10.1007/s10872-008-0068-3

    Article  Google Scholar 

  • Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Riceevans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants 322(2)

  • Shi Z et al (2012) Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review. Aeolian Res 5:21–42. doi:10.1016/j.aeolia.2012.03.001

    Article  Google Scholar 

  • Silva MM, Santos MR, Caroço G, Rocha R, Justino G, Mira L (2002) Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic Res 36:1219–1227

    Article  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol:152–178

  • Tarnawski M, Depta K, Grejciun D, Szelepin B (2006) HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract a natural immunomodulator. J Pharm Biomed Anal 41:182–188. doi:10.1016/j.jpba.2005.11.012

    Article  Google Scholar 

  • Theis TL, Singer PC (1974) Complexation of iron(ll) by organic matter and its effect on iron(ll). Oxygenation 8(6)

  • Tsutsuki K, Kondo R (1995) Lignin-derived phenolic compounds in different types of peat profiles in Hokkaido. Jpn Soil Sci Plant Nutr 41:515–527. doi:10.1080/00380768.1995.10419613

    Article  Google Scholar 

  • Turner SM, Nightingale PD, Spokes LJ (1996) Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature [H.W. Wilson - GS] 383:513–517

  • Visser F, Gerringa L, Timmermans KR (2003) The role of the reactivity and content of iron of aerosol dust on growth rates of two Antarctic diatom species1. J Phycol 39:1085–1094

    Article  Google Scholar 

  • Wan X, Xiang W, Yu S (2013a) Determination of phenols from peatland water by solid phase extraction and high performance liquid chromatography. Chin J Anal Lab 32:15–19. doi:10.13595/j.cnki.issn1000-0720.2013.0259

    Google Scholar 

  • Wan X, Xiang W, Yu W, Mengqiang D, Hanqin W, Yu S, Chao Z (2013b) Causes of high concentration dissolved iron in plateau peatland. Environ Sci Technol 11:002

    Google Scholar 

  • Wen L-S, Santschi P, Gill G, Paternostro C (1999) Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Mar Chem 63:185–212

    Article  Google Scholar 

  • White RA, Freeman C, Kang H (2011) Plant-derived phenolic compounds impair the remediation of acid mine drainage using treatment wetlands. Ecol Eng 37:172–175. doi:10.1016/j.ecoleng.2010.08.008

    Article  Google Scholar 

  • Williams CJ, Yavitt JB, Wieder RK, Cleavitt NL (1998) Cupric oxide oxidation products of northern peat and peat-forming plants. Can J Bot 76:51–62. doi:10.1139/b97-150

    Google Scholar 

  • Windom H, Byrd J, Smith R Jr, Hungspreugs M, Dharmvanij S, Thumtrakul W, Yeats P (1991) Trace metal-nutrient relationships in estuaries. Mar Chem 32:177–194. doi:10.1016/0304-4203(91)90037-w

    Article  Google Scholar 

  • Windom HL, Niencheski LF, Smith RG Jr (1999) Biogeochemistry of nutrients and trace metals in the estuarine region of the Patos Lagoon (Brazil). Estuar Coast Shelf Sci 48:113–123

    Article  Google Scholar 

  • Witter AE, Luther GW III (1998) Variation in Fe-organic complexation with depth in the Northwestern Atlantic Ocean as determined using a kinetic approach. Mar Chem 62:241–258. doi:10.1016/s0304-4203(98)00044-9

    Article  Google Scholar 

  • Xu SL, Duan WH, Liu SJ, Zheng XJ, She GH (1986) A study on the ferrous ion oxidized by the air in queous solution:I. The effect of pH value on the oxidizing rate and the catalytic mechanism of the “screen effect” on the hydrated ferrous ion destroyed by the hydrolytic product of ferric ion. J Yunnan Univ 8:191–197

    Google Scholar 

  • Zaccone C, Said-Pullicino D, Gigliotti G, Miano TM (2008) Diagenetic trends in the phenolic constituents of sphagnum-dominated peat and its corresponding humic acid fraction. Org Geochem 39:830–838. doi:10.1016/j.orggeochem.2008.04.018

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by Grants from the National Natural Science Foundation of China (No. NSFC41472316 and NSFC41172330). The authors would like to thank the anonymous reviewers for their suggestions to improve the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xiang, W., Fu, X. et al. Geochemical interactions between iron and phenolics originated from peatland in Hani, China: implications for effective transport of iron from terrestrial systems to marine. Environ Earth Sci 75, 336 (2016). https://doi.org/10.1007/s12665-015-5189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5189-6

Keywords

Navigation