Skip to main content

Advertisement

Log in

Model-based assessment of groundwater recharge in Slovenia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The implementation process of the EU water legislation (EU WFD, EU GWD) has put pressure on environmental managers to create, analyse and disseminate hydrological data in recent years. In this context, distributed hydrological model results at the macro scale (>10,000 km2) have gained importance for the Environment Agency of the Republic of Slovenia, too. Within a joint project the distributed water balance model GROWA, developed for Germany, has been adapted to Slovenia by re-calibrating the routine for determining the average annual groundwater recharge rate. This routine consists mainly of a base flow index approach (BFI). This BFI is based on 41 different site conditions in Slovenia, whereas lithology dominates the recharge process. This paper outlines the general GROWA approach, the required input data, and the calibration process. Validated model results for the period 1971–2000, especially total runoff and base flow, are presented and discussed. These results have been used already for practical water management issues in Slovenia on European, national and regional level. It is shown that Slovenian groundwater resources exhibit high regional and seasonal variability. Tendencies of more frequent and more pronounced droughts have been detected. As demonstrated by the results GROWA is a valuable tool for the spatially distributed assessment of groundwater recharge in Slovenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrahamsen P, Hansen S (2000) Daisy: an open soil-crop-atmosphere system model. Environ Model Softw 15:313–330

    Article  Google Scholar 

  • Andjelov M, Gale U, Kukar N, Trišić N, Uhan J (2006) Groundwater quantitative status assessment in Slovenia (in Slovenian, English summary). Geologija 49/2:383–392. http://www.geologija-revija.si/clanki.aspx?a=255. Accessed 24 Feb 2015

  • Andjelov M, Kunkel R, Uhan J, Wendland F (2014) Determination of nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia. J Environ Sci 26:1806–1817

    Article  Google Scholar 

  • ARSO (2010a) Meteorološki informacijski sistem. Agencija Republike Slovenije za okolje, Ljubljana

    Google Scholar 

  • ARSO (2010b) Hidrološki informacijski sistem. Agencija Republike Slovenije za okolje, Ljubljana

    Google Scholar 

  • ARSO (2011) Geografski informacijski sistem ARSO. Spletna objektna storitev (WFS) za izdajanje okoljskih prostorskih podatkov. http://gis.arso.gov.si/. Accessed 24 Feb 2015

  • Bogena H, Kunkel R, Schöbel T, Schrey HP, Wendland F (2005a) Distributed modelling of groundwater recharge at the macroscale. Ecol Model 187:15–26

    Article  Google Scholar 

  • Bogena H, Kunkel R, Montzka C, Wendland F (2005b) Uncertainties in the simulation of groundwater recharge at different scales. Adv Geosci 5:25–30

    Article  Google Scholar 

  • Brown A, Matlock MD (2011) A review of water scarcity indices and methodologies. White paper the sustainability consortium. http://www.sustainabilityconsortium.org/wp-content/themes/sustainability/assets/pdf/whitepapers/2011_Brown_Matlock_Water-Availability-Assessment-Indices-and-Methodologies-Lit-Review.pdf. Accessed 24 Feb 2015

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater 50:170–176

    Article  Google Scholar 

  • Buser S (2010) Geološka karta Slovenije = Geological map of Slovenia—1:250.000. Ljubljana. http://www.geo-zs.si/podrocje.aspx?id=441. Accessed 24 Feb 2015

  • Buser S, Draksler V (1993) Geological map of Slovenia 1:500,000. Geodetski zavod Slovenije, Mladinska knjiga, Ljubljana

    Google Scholar 

  • Celen M, Karpuzcu M, Engin G, Tetzlaff B, Wendland F (2014) Modelling of the total phosphorus input pathways in Porsuk reservoir catchment in Turkey. Environ Earth Sci 72:5019–5034

    Article  Google Scholar 

  • Chung IM, Kim NW, Lee J, Sophocleous M (2010) Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeol J 18:1253–1264

    Article  Google Scholar 

  • CLC (2000) Corine land cover information. http://gis.arso.gov.si/clc/. Accessed 24 Feb 2015

  • Combalicher EA et al (2008) Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea. J Earth Syst Sci 117:553–566

    Article  Google Scholar 

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277

    Article  Google Scholar 

  • Demuth S (1993) Untersuchungen zum Niedrigwasser in West-Europa. Freiburger Schr zur Hydrologie:1, Freiburg

  • Devlin JF, Sophocleous M (2005) The persistence of the water budget myth and its relationship to sustainability. Hydrogeol J 13:549–554

    Article  Google Scholar 

  • Dolinar M (2008) Water balance elements—precipitation. In: Frantar P (eds) Water balance of Slovenia 1971–2000. IOP Conference Series: Earth and Environmental Science 4 012020, pp 29–39

  • Dörhöfer G, Josopait V (1981) A method for determining area-related rates of groundwater recharge. Nat Res Dev 14:99–119

    Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  Google Scholar 

  • EEA (1999) Groundwater quality and quantity in Europe. Technical report 22, Copenhagen

  • EEA (2009) Water resources across Europe-confronting water scarcity and drought. EEA Report No 2/2009, Copenhagen

  • EEA (2010a) The European environment-state and outlook 2010: Synthesis. European Environment Agency, Copenhagen

    Google Scholar 

  • EEA (2010b) Use of freshwater resources (CSI 018/WAT 001). Assessment published Dec 2010. http://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources/use-of-freshwater-resources-assessment-2. Accessed 24 Feb 2015

  • EU WFD (2000) Directive 2000/60/EC of the European Parliament and the Council of the European Union of 23 October 2000 establishing a framework for Community action in the field of water policy. L 327. Official Journal of the European Communities

  • EU GWD (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration, L 327/19. Official Journal of the European Communities

  • Frantar P (2007) Geographical overview of water balance of Slovenia 1971–2000 by main river basins. Acta Geogr Slov 47–1:25–45

    Article  Google Scholar 

  • Frantar P (ed. 2008) Water balance of Slovenia 1971–2000. IOP Conference Series: Earth and Environ Science, vol 4, pp 012020. doi:10.1088/1755-1307/4/1/012020

  • Gabriel B, Ziegler G (1989) Lithofazieseinheiten - ein neues Konzept zur Berechnung der Grundwasserneubildung im Festgesteinsbereich. Wasserwirtsch Wassertechn 39:163–165

    Google Scholar 

  • Goderniaux P et al (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373:122–138

    Article  Google Scholar 

  • Golf W (1981) Ermittlung der Wasserressource im Mittelgebirge. Wasserwirtsch Wassertechn 31:93–95

    Google Scholar 

  • GURS (2000) InSAR DEM 100—Survey and Mapping Administration, Ljubljana. http://prostor.renderspace.net/nc/sistem_zbirk_prostorskih_podatkov/topografsko_kartografski_podatki/digitalni_model_visin. Accessed 24 Feb 2015

  • Hennings V (2000) Methodendokumentation Bodenkunde-Auswertemethoden zur Beurteilung der Empfindlichkeit und Belastbarkeit von Böden. Geol Jb: F1-232

  • Henriksen HJ et al (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. J Hydrol 280:52–71

    Article  Google Scholar 

  • Herrmann F, Jahnke C, Jenn F, Kunkel R, Voigt HJ, Voigt J, Wendland F (2009) Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area, Germany. Hydrogeol J 17:2049–2060

    Article  Google Scholar 

  • HMO (2007) Hidromelioracijski sistemi. Ministrstvo za kmetijstvo, gozdarstvo in prehrano. http://rkg.gov.si/GERK/Za_OB/. Accessed 24 Feb 2015

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J Hydrol 338:237–250

    Article  Google Scholar 

  • Kille K (1970) Das Verfahren MoMNQ, ein Beitrag zur Berechnung der mittleren langjährigen Grundwasserneubildung mit Hilfe der monatlichen Niedrigwasserabflüsse. Z dt geol Ges Sonderh Hydrogeol Hydrogeochem 89–95

  • Kuhr P, Haider J, Kreins P, Kunkel R, Tetzlaff B, Wendland F (2013) Model based assessment of nitrate pollution of water resources on a federal state level for the dimensioning of agro-environmental reduction strategies-The North Rhine-Westphalia (Germany) case study. Water Res Manag 27:885–909

    Article  Google Scholar 

  • Kunkel R, Wendland F (2002) The GROWA98 model for water balance analysis in large river basins-the river Elbe case study. J Hydrol 259:152–162

    Article  Google Scholar 

  • Kunkel R, Bogena H, Tetzlaff B, Wendland F (2006) Digitale Grundwasserneubildungskarte von Niedersachsen, Nordrhein-Westfalen, Hamburg und Bremen: erstellung und Auswertungsbeispiele. Hydrol Wasserbewirtsch 50:212–219

    Google Scholar 

  • Li Q et al (2008) Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. J Hydrol 357:317–336

    Article  Google Scholar 

  • Lobnik F, Vidic NJ, Grčman H, Lisec A, Šporar M, Zupan M, Prus T, Rupreht J, Vrščaj B, Suhadolc M, Mihelič R (2006) Soils of Slovenia: soil map 1:250,000. In: Tajnsek A (ed) Novi izzivi v poljedelstvu 2006. Proceedings of symposium Rogaška Slatina 7 and 8. December 2006 Ljubljana. Slovensko agronomsko društvo, pp 193–197

  • Official Gazette of Republic of Slovenia (2003) Rules on methods for determining water bodies of groundwater. Ur.l. RS, no. 65/2003. http://www.uradni-list.si/. Accessed 26 August 2014

  • Official Gazette of Republic of Slovenia (2005) Rules of determining water bodies of groundwater. Ur. l. RS, no. 63/2005. http://www.uradni-list.si/. Accessed 26 August 2014

  • OGK1 (1998) Basic geological map of Yugoslavia 1:100,000. Map sheets for Slovenia 1967–1998

  • Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27:361–382

    Article  Google Scholar 

  • Perko D (1998) Regionalization of Slovenia. Geografski zbornik, XXXVIII, Ljubljana. http://giam.zrc-sazu.si/zbornik/perko_38.pdf. Accessed 24 Feb 2015

  • PKS (2007) Pedološka karta Slovenije. Analize, Podatki. Ministrstvo za kmetijstvo, gozdarstvo in prehrano. http://rkg.gov.si/GERK/. Accessed 24 Feb 2015

  • Prestor J, Komac M, Janža M, Meglič P, Bavec M, Poljak M (2004) Hidrogeološka karta R Slovenije 1:250 000. Nacionalna baza hidrogeoloških podatkov za opredelitev teles podzemne vode Republike Slovenije. Geološki zavod Slovenije, Ljubljana

  • Prestor J, Urbanc J, Janža M, Meglič P, Šinigoj J, Hribernik K, Komac M, Strojan M, Bizjak M, Feguš B, Brenčič M, Krivic M, Kumelj Š, Požar M, Hötzl M, Sušnik A, Benčina D, Krajnc M, Gacin M (2006) Nacionalna baza hidrogeoloških podaktov za opredelitev teles podzemne vode Republike Slovenije. Geološki zavod Slovenije, Ljubljana

  • Rejec Brancelj I, Dobnikar Tehovnik M, Uhan J (2011) Key features of the national water management plan for 2009–2015 and implementing the water directive. In: Volfand J (ed) Water management in Slovenia. FIT Media, pp 8–19

  • Renger M, Wessolek G (1996) Berechnung der Verdunstungsjahresnummern einzelner Jahre. DVWK, Bonn

  • Seiler KP, Gat JR (2007) Groundwater recharge from run-off, infiltration and percolation. Springer, Dordrecht

    Book  Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources-the Kansas experience. J Hydrol 235:27–43

    Article  Google Scholar 

  • Sorooshian S, Gupta VK, Fulton JL (1983) Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: influence of calibration data variability and length on model credibility. Water Resour Res 19:251–259

    Article  Google Scholar 

  • Tetzlaff B, Wendland F (2008) Flächendifferenzierte Modellierung von Phosphateinträgen in die Oberflächengewässer über Dränagen. Hydrol Wasserbewirtsch 52:258–269

    Google Scholar 

  • Tetzlaff B, Wendland F (2012) Modelling sediment input to surface waters for German states with MEPhos: methodology, sensitivity and uncertainty. Water Res Manage 26:165–184

    Article  Google Scholar 

  • Tetzlaff B, Kunkel R, Taugs R, Dörhöfer G, Wendland F (2004) Grundlagen für eine nachhaltige Bewirtschaftung von Grundwasserressourcen in der Metropolregion Hamburg. Forschungszentrum Jülich GmbH, Jülich

    Google Scholar 

  • Tetzlaff B, Kuhr P, Vereecken H, Wendland F (2009a) Aerial photograph-based delineation of artificially drained areas and their relevance for water balance and nutrient modeling in large river basins. Phys Chem Earth 34:552–564

    Article  Google Scholar 

  • Tetzlaff B, Kuhr P, Wendland F (2009b) A new method for creating maps of artificially drained areas in large river basins based on aerial photographs and geodata. Irrig Drain 58:569–585

    Article  Google Scholar 

  • Tetzlaff B, Vereecken H, Kunkel R, Wendland F (2009c) Modelling phosphorus inputs from agricultural sources and urban areas in river basins. Environ Geol 57:183–193

    Article  Google Scholar 

  • Tetzlaff B, Haider J, Kreins P, Kuhr P, Kunkel R, Wendland F (2013a) Grid-based modelling of nutrient inputs from diffuse and point sources for the state of North Rhine-Westphalia (Germany) as a tool for river basin management according to EU WFD. River Syst 20:213–229

    Article  Google Scholar 

  • Tetzlaff B, Friedrich K, Vorderbrügge T, Vereecken H, Wendland F (2013b) Distributed modelling of mean annual soil erosion and sediment delivery rates to surface waters. Catena 102:13–20

    Article  Google Scholar 

  • Tetzlaff B, Krause D, Marowsky K, Bock A (2015) Eutrophierungsprobleme im Altmühlsee als Folge diffuser und punktförmiger P-Einträge—Modellierung und Ergebnisse. Hydrol Wasserbewirtsch 59:23–36

    Google Scholar 

  • TNP (2012) Management plan of the Triglav National Park 2014–2023-draft. Triglav National Park

  • Uhan J (2012) Quantitative status of groundwater in Slovenia. Groundwater monitoring report 2011. Slovenian Environment Agency, Ljubljana

  • Uhan J, Andjelov M (2012a) Groundwater recharge. Environmental indicators in Slovenia. Slovenian Environment Agency. http://kazalci.arso.gov.si/?data=indicator&ind_id=473&lang_id=94. Accessed 24 Feb 2015

  • Uhan J, Andjelov M (2012b) Groundwater minimum of the last 50 years. Slovenian Environment Agency, Ljubljana

    Google Scholar 

  • Uhan J, Vižintin G, Pezdič J (2010) Groundwater nitrate vulnerability assessment using process-based models and weights-of-evidence technique—Lower Savinja Valley case study Slovenia. Proceedings of XXXVIII IAH Congress, Krakow, pp 205–210

  • Vrba J, Lipponen A (2007) Groundwater resources sustainability indicators. UNESCO IHP-VI. Ser Groundw 14, Paris. http://unesdoc.unesco.org/images/0014/001497/149754e.pdf. Accessed 24 Feb 2015

  • Wendland F, Kunkel R, Tetzlaff B, Dörhöfer G (2003) GIS-based determination of the mean long-term groundwater recharge in Lower Saxony. Environ Geol 45:273–278

    Article  Google Scholar 

  • Wendland F, Behrendt H, Hirt U, Kreins P, Kuhn U, Kuhr P, Kunkel R, Tetzlaff B (2010) Analyse von Agrar- und Umweltmaßnahmen zur Reduktion der Stickstoffbelastung von Grundwasser und Oberflächengewässer in der Flussgebietseinheit Weser. Hydrol Wasserbewirtsch 54:231–244

    Google Scholar 

  • Wessolek G, Facklam M (1997) Standorteigenschaften und Wasserhaushalt von versiegelten Flächen. Z Pflanzenernähr Bodenk 160:41–46

    Article  Google Scholar 

  • Wundt W (1958) Die Kleinstwasserführung der Flüsse als Maß für die verfügbaren Grundwassermengen. Forsch Deut Landeskunde 104:47–54

    Google Scholar 

  • Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. UNESCO IHP-VI. Ser Groundw 6, Paris. http://unesdoc.unesco.org/images/0013/001344/134433e.pdf. Accessed 24 Feb 2015

  • Zupanc V et al (2011) Nitrate leaching under vegetable field above a shallow aquifer in Slovenia. Agric Ecosyst Environ 144:167–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Tetzlaff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tetzlaff, B., Andjelov, M., Kuhr, P. et al. Model-based assessment of groundwater recharge in Slovenia. Environ Earth Sci 74, 6177–6192 (2015). https://doi.org/10.1007/s12665-015-4639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4639-5

Keywords

Navigation