Skip to main content
Log in

Development of a new equivalent circuit model for spectral induced polarization data analysis of ore samples

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Equivalent circuit analysis is a valuable tool for the interpretation of spectral induced polarization (SIP) data. It is not easy to select an appropriate circuit model for analyzing SIP data of ores because the ores are heterogeneous and the circuit model has ambiguity. In view of this, a new circuit model, which was based on the electrochemical theory, was developed; and its suitability was evaluated by comparing it with the Dias and the Cole–Cole circuit models. The proposed model performed significantly better than both the Dias and the Cole–Cole circuit models. The normalized root mean square error (NRMSE) of the new model ranged from 4.41 to 0.87 % while that of the other models ranged from 12.17 to 6.02 %. This study clearly demonstrates that the new circuit model is useful for analysis of the SIP data. Additionally, the relationship between the SIP parameters and the characteristics of metallic minerals was elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barreto A, Dias CA (2014) Fluid salinity, clay content, and permeability of rocks determined through complex resistivity partition fraction decomposition. Geophysics 79:D333–D347. doi:10.1190/geo2013-0306.1

    Article  Google Scholar 

  • Bieniawski ZT, Bernede MJ (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1 Suggested method for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Mining Sci Geomech Abstr 16:138–140. doi:10.1016/0148-9062(79)91451-7

    Article  Google Scholar 

  • Binley A, Slater LD, Fukes M, Cassiani G (2005) Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resour Res 41:W12417. doi:10.1029/2005wr004202

    Google Scholar 

  • Bockris JM, Devanathan M, Muller K (1963) On the structure of charged interfaces. Proc Royal Soc Lond Ser A Math Phys Sci 274:55–79

    Article  Google Scholar 

  • Dias CA (1972) Analytical model for a polarizable medium at radio and lower frequencies. J Geophys Res 77:4945–4956. doi:10.1029/JB077i026p04945

    Article  Google Scholar 

  • Dias CA (2000) Developments in a model to describe low-frequency electrical polarization of rocks. Geophysics 65:437–451. doi:10.1190/1.1444738

    Article  Google Scholar 

  • Jorcin J-B, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta 51:1473–1479. doi:10.1016/j.electacta.2005.02.128

    Article  Google Scholar 

  • Jougnot D, Ghorbani A, Revil A, Leroy P, Cosenza P (2010) Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach. Geophys J Int 180:210–224. doi:10.1111/j.1365-246X.2009.04426.x

    Article  Google Scholar 

  • Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947. doi:10.1002/elan.200390114

    Article  Google Scholar 

  • Leroy P, Revil A (2009) A mechanistic model for the spectral induced polarization of clay materials. J Geophys Res Solid Earth 114:B10202. doi:10.1029/2008jb006114

    Article  Google Scholar 

  • Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy in: impedance spectroscopy. Wiley, New York, pp 1–26. doi:10.1002/0471716243.ch1

  • Nguyen PT, Amiri O (2014) Study of electrical double layer effect on chloride transport in unsaturated concrete. Constr Build Mater 50:492–498. doi:10.1016/j.conbuildmat.2013.09.013

    Article  Google Scholar 

  • Niranjan U (2004) Simultaneous storage of medical images in the spatial and frequency domain: a comparative study. Biomed Eng 3:17

    Google Scholar 

  • Park S, Matsui T (1998) Basic study on resistivity of rocks; Ganseki hiteiko ni kansuru kisoteki kenkyu. Butsuri Tansa (Geophysical Exploration) J Inform PBD 51(3):201–209

  • Pelton W, Ward S, Hallof P, Sill W, Nelson P (1978) Mineral discrimination and removal of inductive coupling with multifrequency. Geophysics 43:588–609. doi:10.1190/1.1440839

    Article  Google Scholar 

  • Schmutz M, Revil A, Vaudelet P, Batzle M, Viñao PF, Werkema DD (2010) Influence of oil saturation upon spectral induced polarization of oil-bearing sands. Geophys J Int 183:211–224. doi:10.1111/j.1365-246X.2010.04751.x

    Article  Google Scholar 

  • Vanhala H, Peltoniemi M (1992) Spectral IP studies of Finnish ore prospects. Geophysics 57:1545–1555. doi:10.1190/1.1443222

    Article  Google Scholar 

  • Vanhala H, Soininen H, Kukkonen I (1992) Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics 57:1014–1017. doi:10.1190/1.1443312

    Article  Google Scholar 

  • Weller A, Börner FD (1996) Measurements of spectral induced polarization for environmental purposes. Environ Geol 27:329–334. doi:10.1007/bf00766702

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science, ICT and Future Planning and also an Energy Efficiency and Resources of the Korea Institute of Energy Technology and Planning grant funded by the Korea Government Ministry of Trade, Industry and Energy (20142510101750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.W., Park, S. & Shin, D.B. Development of a new equivalent circuit model for spectral induced polarization data analysis of ore samples. Environ Earth Sci 74, 5711–5716 (2015). https://doi.org/10.1007/s12665-015-4588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4588-z

Keywords

Navigation