Skip to main content
Log in

Estimation of dissolved oxygen using data-driven techniques in the Tai Po River, Hong Kong

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study investigates the applicability of multilinear regression (MLR), adaptive neural-based fuzzy inference system (ANFIS) and artificial neural networks (ANN) methods from data-driven techniques in estimation of the dissolved oxygen (DO), which is an important parameter in water quality, aquatic life, efficient water management and health care planning studies. The measured parameters covering 21 years of sample data for the years 1991–2011 in the Tai Po River, Hong Kong, were used to develop the models. The input parameters used to estimate DO are chloride (Cl), pH value (pH), electrical conductivity, temperature (Temp), nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), ammonia nitrogen (NH4-N) and total phosphorous (T-P). The performance of the developed models was evaluated through the three performance criteria: correlation coefficient, root mean square error and the Nash–Sutcliffe efficiency coefficient. When the results of the developed models were compared with DO measurements using performance criteria, the ANN model shows better performance than the MLR and ANFIS models in estimation of DO concentration. Also, a sensitivity analysis was carried out to evaluate the relative importance of the input parameters in estimation of the DO. The most effective input parameters are determined as Cl, Temp, NO3-N, NO2-N, NH4-N and T-P parameters, respectively. Furthermore, the pH variable has the least contribution on the ANN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anctil F, Filion M, Tournebize J (2009) A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment. Ecol Model 220:879–887

    Article  Google Scholar 

  • APHA (1989) Standard methods for the examination of water and waste water, l6th edn. American Public Health Association lnc., Washington, D.C., p 1268

    Google Scholar 

  • Ay M, Kişi Ö (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado, USA. J Environ Eng 138:654–662

    Article  Google Scholar 

  • Basant N, Gupta Sh, Malik A, Singh KP (2010) Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study. Chemom Intell Lab 104:172–180

    Article  Google Scholar 

  • Bilgili M, Sahin B, Yasar A (2007) Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energy 32:2350–2360

    Article  Google Scholar 

  • Bowers JA, Shedrow CB (2000) Predicting stream water quality using artificial neural networks. WSRC-MS-2000-00112

  • Chang L-C, Chang F-J (2001) Intelligent control for modelling of real-time reservoir operation. Hydrol Process 15:1621–1634

    Article  Google Scholar 

  • Chang FJ, Kao LS, Kuo YM, Liu CW (2010) Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan. J Hydrol 388:65–76

    Article  Google Scholar 

  • Chen WB, Liu WCH (2013) Artificial neural network modeling of dissolved oxygen in reservoir. Environ Monit Assess. doi:10.1007/s10661-013-3450-6

    Google Scholar 

  • Da Costa AO, Silva PF, Sabara MG, Da Costa Jr EF (2009) Use of neural networks for monitoring surface water quality changes in a neotropical urban stream. Environ Monit Assess 155:527–538

    Article  Google Scholar 

  • Dogan E, Sengorur B, Koklu R (2009) Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage 90:1229–1235

    Article  Google Scholar 

  • Ghorbani MA, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 114:107–114

    Article  Google Scholar 

  • Govindaraju RS (2000) Artificial neural network in hydrology II: hydrologic application, ASCE task committee application of artificial neural networks in hydrology. J Hydrol Eng 5:124–137

    Article  Google Scholar 

  • Ha H, Stenstrom MK (2003) Identification of land use with water quality data in stormwater using a neural network. Water Res 37:4222–4230

    Article  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • He B, Oki T, Sun F, Komori D, Kanae S, Wang Y, Kim H, Yamazaki D (2011) Estimating monthly total nitrogen concentration in streams by using artificial neural network. J Environ Manage 92:172–177

    Article  Google Scholar 

  • Kişi Ö, Ay M (2012) Comparison of ANN and ANFIS techniques in modeling dissolved oxygen. Sixteenth International Water Technology Conference (IWTC-16), Istanbul, Turkey, Abstract Book, 2 ed, p 141, 7–10 May

  • Kuo Y, Liu C, Lin KH (2004) Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res 38:148–158

    Article  Google Scholar 

  • Kuo JT, Wang YY, Lung WS (2006) A hybrid neural–genetic algorithm for reservoir water quality management. Water Res 40:1367–1376

    Article  Google Scholar 

  • Kuo JT, Hsieh M, Lung W, She N (2007) Using artificial neural network for reservoir eutrophication prediction. Ecol Model 200:171–177

    Article  Google Scholar 

  • Lek S, Guegan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73

    Article  Google Scholar 

  • Lin CT, Lee CSG (1995) Neural fuzzy systems. Prentice Hall, Englewood Cliffs, New Jersey, USA

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in neurons activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  • Melesse AM, Hanley RS (2005) Artificial neural network application for multiecosystem carbon flux simulation. Ecol Model 189:305–314

    Article  Google Scholar 

  • Najah A, El-Shafie A, Karim OA, Jaafar O (2011) Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations. Hydrol Earth Syst SC 15:2693–2708

    Article  Google Scholar 

  • Noori R, Karbassi A, Ashrafi K, Ardestani M, Mehrdadi N, Nabi Bidhendi G (2012) Active and online prediction of BOD5 in river systems using reduced-order support vector machine. Environ Earth Sci 67:141–149

    Article  Google Scholar 

  • Ouarda TBMJ, Shu C (2009) Regional low-flow frequency analysis using single and ensemble artificial neural networks. Water Resour Res 45:w11428

    Google Scholar 

  • Raman H, Chandramouli V (1996) Deriving a general operating policy for reservoirs using neural networks. J Water Resour Plan Manage 122:342–347

    Article  Google Scholar 

  • Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L (2010) Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol Model 221:1239–1244

    Article  Google Scholar 

  • Rogers LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30:457–481

    Article  Google Scholar 

  • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Model 220:888–895

    Article  Google Scholar 

  • Terzi Ö (2011) Monthly river flow forecasting by data mining process. In: Funatsu k (ed) Knowledge-oriented applications in data mining. InTech, pp 127–134

  • Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. Wiley, New Jersey

    Google Scholar 

  • Verma AK, Singh TN (2013) Prediction of water quality from simple field parameters. Environ Earth Sci 69:821–829

    Article  Google Scholar 

  • Wen CW, Lee CS (1998) A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resour Res 34:427–436

    Article  Google Scholar 

  • Wen X, Fang J, Diao M, Zhang C (2013) Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environ Monit Assess 185:4361–4371

    Article  Google Scholar 

  • Yilmaz I, Kaynar O (2011) Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl 38:5958–5966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, S., Fazelifard, M.H., Terzi, Ö. et al. Estimation of dissolved oxygen using data-driven techniques in the Tai Po River, Hong Kong. Environ Earth Sci 74, 4065–4073 (2015). https://doi.org/10.1007/s12665-015-4450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4450-3

Keywords

Navigation