Skip to main content
Log in

Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This article adopts adaptive neuro-fuzzy inference system (ANFIS) and multi adaptive regression spline (MARS) for prediction of spatial variability of reduced level of rock depth (d) in Bangalore. The database consists of 652 d values spread over a 220 km2 area of Bangalore. In two-dimensional analysis, the function \(d = f (x_{\text{1}} ,x_{\text{2}} )\), where x 1, and x 2 are the latitude and longitude of a point corresponding to d value, is to be approximated with which d value at any half space point in Bangalore can be determined. The input variables of ANFIS and MARS are x 1 and x 2. Map of d has been also produced by developed ANFIS and MARS models. The comparison between the MARS and ANFIS models demonstrates that the MARS model is superior to the ANFIS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso EE, Krizek RJ (1975) Stochastic formulations of soil properties. In: Proceedings of the second international conference on applications of statistics and probability in soil and structural engineering, Aachen, Germany, pp 10–32

  • Altrock CV (1995) Fuzzy logic and neurofuzzy applications explained. Prentice-Hall, New Jersey

    Google Scholar 

  • Alvarez Grima M (2000) Neuro-fuzzy modeling in engineering geology. AA Balkema, Rotterdam, p 244

    Google Scholar 

  • Asaoka A, Grivas DA (1982) Spatial variability of the undrained strength of clays. J Geotech Eng ASCE 108(5):743–745

    Google Scholar 

  • Baecher GB (1984) On estimating auto-covariance of soil properties. Specialty conference on probabilistic mechanics and structural reliability. ASCE 110:214–218

    Google Scholar 

  • Baker R (1984) Modeling soil variability as a random field. Math Geol 16(5):435–448

    Article  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York, p 256

  • Brown M, Harris C (1994) Neurofuzzy adaptive modeling and control. Prentice-Hall, New Jersey

    Google Scholar 

  • Caers J (2011) Modeling Uncertainty in the earth sciences. Wiley, New York

  • Chiasson P, Lafleur J, Soulie M, Law KT (1995) Characterizing spatial variability of clay by geostatistics. Can Geotech J 32:1–10

    Article  Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer Math 31:317–403

    Google Scholar 

  • De Veaux RD, Psichogios DC, Ungar LH (1993) A comparison of two nonparametric estimation schemes: MARS and neural networks. Comput Chem Eng 17(8):819–837

    Article  Google Scholar 

  • Degroot DJ (1996) Analyzing spatial variability of in situ soil properties. In: ASCE 540 proceedings of uncertainty ’96, uncertainty in the geologic environment: from theory to practice. ASCE Geotech Special Publication 58:210–238

  • Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280

    Article  Google Scholar 

  • Fenton GA (1998) Random field characterization NGES data. In: Paper presented at the workshop on probabilistic site characterization at NGES, Seattle, WA, pp 550

  • Fenton GA (1999) Random field modeling of CPT data. J Geotech Geoenviron Eng ASCE 125(6):486–498

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Juang CH, Jiang T, Christopher RA (2001) Three-dimensional site characterization: neural network approach. Géotechnique 51(9):799–809

    Article  Google Scholar 

  • Kulatilake PHSW (1989) Probabilistic potentiometric surface mapping. J Geotech Eng ASCE 115(11):1569–1587

    Article  Google Scholar 

  • Kulatilake PHSW, Ghosh A (1998). An investigation into accuracy of spatial variation estimation using static cone penetrometer data. In: Proceedings of the first international symposium on penetration testing, Orlando. FL, USA, pp 815–821

  • Kulatilake PHSW, Miller KM (1987) A scheme for estimating the spatial variation of soil properties in three dimensions. In: Proceedings, first international conference on application of statistics and probability to soil and structural engineering, Vancouver, BC, Canada, pp 669–677

  • Lumb P (1975) Spatial variability of soil properties. In: Proceedings of the second international conference on application of statistics and probability in soil and structural engineering, Aachen, Germany, pp 397–421

  • Mathwork Inc (1999) Matlab user’s manual. Version 5.3. The MathWorks, Inc, Natick

  • Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36(4):612–624

    Article  Google Scholar 

  • Rossi ME, Deutsch CV (2014) Mineral resource estimation. Springer, Berlin

  • Salford systems (2001) MARSTM user guide. Salford Systems, San Diego

  • Sincero AP (2003) Predicting mixing power using artificial neural network. EWRI World Water and Environmental

  • Soulie M (1983) Geostatistical applications in geotechnics. Geostatistics for natural resources characterization, Part 2, NATO ASI Series, pp 703–615

  • Soulie M, Montes P, Sivestri V (1990) Modelling spatial variability of soil parameters. Can Geotech J 27:617–630

    Article  Google Scholar 

  • Tabba MM, Yong RN (1981) Mapping and predicting soil properties, theory. J Eng Mech ASCE 107(5):773–793

    Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

  • Tang WH (1979) Probabilistic evaluation of penetration resistance. J Geotech Eng ASCE 105(GT10):117–191

    Google Scholar 

  • Uzielli M, Vannucchi G, Phonn KK (2005) Random field characterisation of stress-normalised cone penetration testing parameters. Geotechnique 55(1):3–20

    Article  Google Scholar 

  • Vanmarcke EH (1977) Probabilistic modeling of soil profiles. J Geotech Eng ASCE 102(11):1247–1265

    Google Scholar 

  • Vanmarcke EH (1983) Random fields: analysis and synthesis. The MIT Press, Cambridge

    Google Scholar 

  • Wu TH, Wong K (1981) Probabilistic soil exploration: a case history. J Geotech Eng ASCE 107(GT12):1693–1711

    Google Scholar 

  • Yaglom AM (1962) Theory of stationary random functions. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Yang CC, Prasher SO, Lacroix R, Kim SH (2003) A multivariate adaptive regression splines model for simulation of pesticide transport in soils. Biosyst Eng 86(1):9–15

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank T.G. Sitharam for providing the rock depth data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijush Samui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samui, P., Kim, D. & Viswanathan, R. Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS). Environ Earth Sci 73, 4265–4272 (2015). https://doi.org/10.1007/s12665-014-3711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3711-x

Keywords

Navigation