Skip to main content

Advertisement

Log in

Artificial recharge of the phreatic aquifer in the upper Friuli plain, Italy, by a large infiltration basin

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To cope with the general reduction of water availability and increase the subsurface storage of high-quality surficial waters, an artificial recharge project is ongoing in northern Italy within the WARBO LIFE+ Project funded by EU. WARBO is aimed at implementing large-scale use of artificial recharge in Italy where water directives still strongly limit its application. In this context, the Mereto recharge site was selected in the upper Fruili plain where the water availability is guaranteed during winter period by the Tagliamento and Ledra Rivers. An infiltration basin, about 5.5 m deep and 45 × 7 m2 wide, was built at Mereto in the early 2000s but the possibility of implementing the recharge has been allowed only very recently. The site is characterized by an elevation of 105 m asl and the depth to the groundwater table averages 50 m. Below a few meter-thick organic soil, the aquifer is composed by coarse deposits with an estimated thickness of 100 m and an average vertical hydraulic conductivity on the order of 10−4 m/s. A ~0.1 m3/s infiltration flow has been preliminary estimated (corresponding to an infiltration rate of 60 cm/h). Geophysical investigations (electrical resistivity tomography, high-resolution seismic surveys) together with infiltration and pumping tests have been carried out to characterize the vadose zone and the unconfined aquifer in the study area. Functional approaches and three-dimensional (3D) Finite Element numerical computations have been used to predict the effect of the artificial recharge. The results of these investigations will greatly reduce the hydrogeological knowledge gaps and will be used to fine tune the recharge program and to define the monitoring concept. This contribution aims to provide a methodology for the implementation of managed aquifer recharge programs using existing structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antonelli R, Stefanini S (1982) Nuovi contributi idrogeologici ed idrochimici sugli acquiferi dell’alta pianura veronese. Mem Sc Geol 35:35–67

    Google Scholar 

  • Associazione Geotecnica Italiana (1977) Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche. AGI, pp 1–93

  • Bouri S, Dhia HB (2010) A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: the Teboulba aquifer system (Tunisian Sahel). Comptes Rendus Geosci 342(1):60–74

    Article  Google Scholar 

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142

    Article  Google Scholar 

  • Chaieb H, Moncef R, Ouerfelli N, Laghi M, Magagnini L, Tosatto O, De Angelis A, Sollazzo F, Teatini P (2013), On the effectiveness of reusing treated wastewater by infiltration ponds in coastal farmlands. Preliminary investigation on insights from the Korba site, Tunisia. In: 1st CIGR Inter-Regional Conference on Land and Water Challenges, Paper no S7–8

  • Civita M (2005) Parere tecnico sul ravvenamento dell’acquifero libero nei Comuni di Lestizza, Pozzuolo del Friuli, Mereto di Tomba (UD). Consorzio di Bonifica Ledra, Tagliamento

  • Consorzio di Bonifica Ledra-Tagliamento (1982) Studio per la determinazione del bilancio idrologico dell’alta pianura friulana compresa tra i fiumi Isonzo e Tagliamento. Relazione. Technical Report, Udine

  • Cucchi F, Giorgetti F, Gemiti F, Massari G, Oberti S (1999) Caratterizzazione geochimica delle falde acquifere della pianura friulana. In: Acque sotterranee: Risorsa invisibile, Atti della giornata mondiale dell’acqua, Roma, 23 marzo 1998, Publ. CNR, GNDCI no 1955

  • Dal Prà A, Fabbri P, Bellenghi G (1989) Esempi di sfruttamento delle falde artesiane nella media pianura veneta in aree non servite da acquedotti pubblici. Modalità di utilizzazione, quantità dei prelievi, vantaggi ed effetti negativi. Mem Sc Geol 41:115–130

    Article  Google Scholar 

  • Della Vedova B, Nicolich R, Castelli E, Cimolino A, Barison E (2009) The geothermal potential of the carbonatic platform buried beneath the Veneto and the Friuli coastal areas: results from the Grado-1 borehole (NE Italy). Epitome Geoitalia 2009(3):141

    Google Scholar 

  • Dragoni W (1998) Some considerations on climatic changes, water resources and water needs in the Italian region south of the 43°N. In: Issar A, Brown N (eds) Water, environment and society in times of climatic change. Kluwer Publications, Dordrecht, pp 241–271

  • Feruglio E (1925) La zona delle risorgive del Basso Friuli fra il Tagliamento e la Torre. Ann Staz Chim Agr Sperim Udine, serie 3, p 1

  • Florineth D, Schlüchter C (1998) Reconstructing Last Glacial Maximum ice surface geometry and flowlines in the central Swiss Alps. Eclogae Geol Helv 91:391–407

    Google Scholar 

  • Florineth D, Schlüchter C (2000) Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quatern Res 54:295–308

    Article  Google Scholar 

  • Fontana A (2006) Evoluzione geomorfologica della bassa pianura friulana. Pubbl N 47, Edizioni del Museo Friulano di Storia Naturale

  • Giuffrida A, Conte M (1990) L’evoluzione a lungo termine del clima italiano. Le Variazioni Recenti del Clima (1800–1990) e le Prospettive per il XXI Secolo. Mem Soc Geograf It, XLVI:329–342

  • Green WH, Ampt GA (1911) Studies on soil physics. J Agric Sci 4(1):1–24

    Article  Google Scholar 

  • Hazen A (1892) Some physical properties of sands and gravels, with special reference to their use in filtration. In: 24th Annual Report, Massachusetts State Board of Health, Pub Doc No 34, pp 539–556

  • Hazen A (1911) Discussion of ‘Dams on sand foundations’ by AC Koenig. Trans Am Soc Civ Eng 73:199–203

    Google Scholar 

  • ISPRA (2010) Archivio Nazionale delle Indagini del Sottosuolo, http://sgi2.isprambiente.it/indagini/scheda_indagine.asp?Codice=161664

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kivimäki AL, Lahti K, Hatva T, Tuominen SM, Miettinen IT (1998) Removal of organic matter during bank filtration. In: Peters JH et al (eds) Artificial recharge of groundwater. Balkema Publishing, Rotterdam, pp 107–112

    Google Scholar 

  • Krijgsmann B, Lobo Ferreira JPC (2001) A Methodology for Delineating Wellhead Protection Areas. Laboratorio Nacional de Engenharia Civil, Informacao Tecnica de Hidraulica, Lisboa, INCH 7, ISBN 972-49-1882-3

  • Logan J (1964) Estimating transmissibility from routine production tests of water wells. Groundwater 2:35–37

    Article  Google Scholar 

  • Martelli G, Granati C (2007a) Lithostratigraphical and hydrogeological characteristics of the aquifers of the low Friuli plain and sustainability of groundwater extractions. Mem Descr Carta Geol d’Italia LXXVI:241–266

    Google Scholar 

  • Martelli G, Granati C (2007b) Valutazione della ricarica del sistema acquifero della bassa pianura friulana. Giornale Di Geologia Applicata 5:89–114

    Google Scholar 

  • Martelli G, Granati C (2010) A comprehensive hydrogeological view of the Friuli alluvial plain by means of a multi-annual quantitative and qualitative research survey. Mem Descr Carta Geol d’Italia XC:181–208

    Google Scholar 

  • Martelli G, Granati C, Rossi S (2004) The multistrata aquifer system in the low Friuli Plain (NE Italy). Proc ISES. Istanbul, Turkey, pp 267–274

    Google Scholar 

  • Massmann JW, Butchart C, Stolar S (2003) Infiltration Characteristics, Performance, and Design of Stormwater Facilities. Final Research Report, Research Project T1803, Task 12. Washington State Department of Transportation, Olympia, Washington

  • Matthess G, Ubell K (1983) Lehrbuch der Hydrogeologie. Allgemeine Hydrologie, Grundwasserhaushalt, vol 1. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Olsthoorn TN, Mosch MJM (2002) Fifty years artificial recharge in the Amsterdam dune area. In: Dillion PJ (ed) Management of aquifer recharge for sustainability, Proceedings of the 4th International Symposium on Artificial Recharge. Balkema Publishing, Rotterdam, pp 29–33

  • Orombelli G, Ravazzi C (1996) The late glacial and early Holocene: chronology and paleoclimate. Il Quat 9(2):439–444

    Google Scholar 

  • Paniconi C, Putti M (1994) A comparison of Picard and Newton iteration in the numerical simulation of multidimensional variably saturated flow problems. Water Resour Res 30(12):3357–3374

    Article  Google Scholar 

  • Peters JH (1995) Artificial recharge and water supply in the Netherlands, state of the arts and future trends. In: Johnson AI, Pyne RDG (eds) Artificial recharge of ground water II. ASCE Publishing, New York

    Google Scholar 

  • Philip JR (1969) Theory of infiltration. Adv Hydrosci 5:215–296

    Article  Google Scholar 

  • Putti M, Paniconi C (1995) Picard and Newton linearization for the coupled model of saltwater intrusion in aquifer. Adv Water Resour 18(3):159–170

    Article  Google Scholar 

  • Regione Autonoma Friuli-Venezia Giulia (2004) Carta del sottosuolo della Pianura Friulana. Litografia Artistica Cartografica, Firenze

  • Regione Emilia-Romagna, ENI-AGIP (1998) Riserve idriche sotterranee della Regione Emilia-Romagna. SELCA Publishing, Firenze (IT)

  • Regione Lombardia, ENI-AGIP (2002) Geology of the Po plain aquifers in the Lombardy region. SELCA Publishing, Firenze (IT)

  • Samadder RK, Kumar S, Gupta RP (2011) Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains. J Hydrol 400:154–164

    Article  Google Scholar 

  • Sanchez-Vila X, Armenter JL, Ortuño F, Queralt E, Fernandez-Garcia D (2012) Managed artificial recharge in the Llobregat aquifers: quantitative versus qualitative aspects. In: The Llobregat: The Story of a Polluted Mediterranean River, Hdb Env Chem, Springer, Berlin, pp 51–68

  • Schaap MG, Leij FJ, van Genuchten MTh (1998) Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci Soc Am J 62:847–855

    Article  Google Scholar 

  • Sheng Z (2005) An aquifer storage and recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. J Environ Manag 75(4):367–377

    Article  Google Scholar 

  • Stefanini S, Cucchi F (1977) Gli acquiferi nel sottosuolo della Provincia di Udine (Friuli-Venezia Giulia). Quaderni IRSA 34(6):131–147

    Google Scholar 

  • Taroni G, Carbognin L, Pianetti F (1998) Analisi statistica della pluviometria tra Brenta e Piave. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti—Cl. Sc. Fisiche, vol 157/2, pp 345–360

  • Tersigni S, Sappa G, Ramberti S, Coviello MT (2010) Considerations on the state of public water supply in ltaly. Giornale Di Geologia Applicata 15:5–15

    Google Scholar 

  • Todd DK (1980) Groundwater hydrology. Wiley, New York

    Google Scholar 

  • USEPA (1994) Ground water and wellhead protection handbook. EPA/625/R-94/001. Office of Ground Water Protection, Washington DC, p 270

    Google Scholar 

  • van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Wyssling L (1979) Eine neue Formel zur Berechnung der Zuströmdauer des Grundwassers zu einem Grundwasserpumpwerk. Eclogae Geol Helv 72:401–406

    Google Scholar 

  • Zuppi GM (2007) How do deep saline groundwater work in the Mediterranean coastal plains. Epitome Geoitalia 2:179

    Google Scholar 

Download references

Acknowledgments

The study was funded by the EU LIFE + Project “WATER RE-BORN—Artificial Recharge: Innovative Technologies for the Sustainable Management of Water Resources”. The authors gratefully acknowledge the well drilling company Botti Elio S.a.s. (Adria, Italy), the personnel of the Consorzio di Bonifica Ledra-Tagliamento, particularly Massimo Canali and Stefano Bongiovanni, for the assistance in the field, together with Giorgio Mattassi and Davide Brandolin, ARPA Friuli Venezia Giulia (Palmanova, Italy), for their fruitful support to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Teatini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teatini, P., Comerlati, A., Carvalho, T. et al. Artificial recharge of the phreatic aquifer in the upper Friuli plain, Italy, by a large infiltration basin. Environ Earth Sci 73, 2579–2593 (2015). https://doi.org/10.1007/s12665-014-3207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3207-8

Keywords

Navigation