Skip to main content

Advertisement

Log in

Carbon isotopes and geochemical processes in CO2-rich cold mineral water, N-Portugal

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper summarizes a new outlook on the conceptual model of Melgaço–Messegães CO2-rich cold (≈18 °C) mineral water systems, issuing in N of Portugal, based on their isotopic (2H, 3H, 13C, 14C and 18O) and geochemical features. Stable isotopes indicate the meteoric origin of these CO2-rich mineral waters. Based on the isotopic fractionation with the altitude, a recharge altitude between 513 up to 740 m a.s.l. was estimated, corroborating the tritium results. The lowest 3H content (0 TU) is found in the groundwater samples with the highest mineralization. The mineral waters circulation are mainly related to a granitic and granodioritic environment inducing two different groundwater types (Ca/Na–HCO3 and Na/Ca–HCO3), indicating different underground flow paths. Calcium dissolution is controlled by hydrolysis of rock-matrix silicate minerals (e.g. Ca-plagioclases) and not associated to anthropogenic sources. The shallow dilute groundwaters exhibit signatures of anthropogenic origins (e.g. NO3) and higher Na/Ca ratios. The stable isotopes together with the geochemistry provided no indication of mixing between the regional shallow cold dilute groundwater and mineral water systems. The heavy isotopic signatures identified in the δ13C data (δ13C = 4.7 ‰, performed on the total dissolved inorganic carbon (TDIC) of CO2-rich mineral waters) could be derived from a deep-seated (upper mantle) source or associated to methanogenesis (CH4 source). The negligible 14C content (≈2 pmC) determined in the TDIC of the mineral waters, corroborates the hypothesis of a mantle-derived carbon source to the mineral groundwater systems or dissolution of carbonate layers at depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355

    Article  Google Scholar 

  • Barker JF, Fritz F (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289–291

    Article  Google Scholar 

  • Bergfeld D, Goff F, Janik CJ (2001) Carbon isotope systematics and CO2 sources in the Geysers-Clear Lake region, northern California, USA. Geothermics 30:303–331

    Article  Google Scholar 

  • Bowser CJ, Jones BF (2002) Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. Am J Sci 302:582–662

    Article  Google Scholar 

  • Brink AH (1960) Petrology and ore geology of the Vila Real-Sabrosa-Vila Pouca de Aguiar region, northern Portugal. Comunicações dos Serviços Geológicos de Portugal, XLIII, SGP, Lisbon, p 143

  • Carreira PM, Marques JM, Monteiro Santos FA, Andrade M, Matias H, Luzio R, Nunes D (2005a) Role of geophysics, geochemistry and environmental isotopes in the assessment of Caldas de Monção low-temperature geothermal system (Portugal). Geother Resour Counc Trans 29:209–213

    Google Scholar 

  • Carreira PM, Valério P, Nunes D, Araújo MF (2005b) Temporal and seasonal variation of stable isotopes and tritium in precipitation over Portugal. In: Proceedings of the International Conference Isotopes in Environmental Studies, Aquatic Forum 2004. IAEA, Vienna, pp 370–373

  • Carreira PM, Marques JM, Carvalho MR, Monteiro Santos F, Matias H, Luzio R, Nunes D (2007) Fluid/mineral equilibrium calculations, isotopes and geophysics as a multidisciplinary approach to the characterization of Monção hydrothermal system (NW-Portugal). In: Chery L, Marsilly G (eds) Aquifers systems management: Darcy’s legacy in a world of impeding water shortage, no 10—IAH. Taylor & Francis Group, London, pp 365–378

    Google Scholar 

  • Carreira PM, Marques JM, Graça RC, Aires-Barros L (2008) Radiocarbon application in dating complex hot and cold CO2-rich mineral water systems: a review case studies ascribed to the northern Portugal. Appl Geochem 23:2817–2828

    Article  Google Scholar 

  • Carreira PM, Marques JM, Carvalho MR, Capasso G, Grassa F (2010) Mantle-derived carbon in hercynian granites. Stable isotope signatures and C/He associations in the thermomineral waters, N-Portugal. J Volcanol Geotherm Res 189:49–56

    Article  Google Scholar 

  • Cerón JC, Pulido-Bosch A, Sanz de Galdeano C (1998) Isotopic identification of CO2 from a deep origin in thermomineral waters of southeastern Spain. Chem Geol 149(3–4):251–258

    Article  Google Scholar 

  • Cerón JC, Pulido-Bosch A, Bakalowicz M (1999) Application of principal components analysis to the study of CO2-rich thermomineral waters in the aquifer system of Alto Guadalentín (Spain). Hydrol Sci J 44(6):929–942

    Article  Google Scholar 

  • Cerón JC, Martín-Vallejo M, García-Rossell L (2000) CO2-rich thermomineral groundwater in the Betic Cordilleras, southeastern Spain: genesis and tectonic implications. Hydrogeol J 8:209–217

    Article  Google Scholar 

  • Changkuon L, Aranyossy JL, Oleas M, Lopoukine M (1989) Determinacion del modelo geotermico del Valle de los Chillos (Ecuador), en base a isotopos ambientales. In: TECDOC-502, Isotope Hydrology Investigations in Latin America. IAEA, Vienna, pp 291–303

  • Chapelle FH, Knobel LL (1985) Stable carbon isotopes of HCO3 in the Aquia aquifer, Maryland: evidence for an isotopically heavy source of CO2. Ground Water 23(5):592–599

    Article  Google Scholar 

  • Clark I, Aravena R (2007) Environmental isotopes in groundwater resource and contaminant hydrogeology. NGWA Course #394, February 6–7, Boston, Massachusetts, p 104

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York

    Google Scholar 

  • Craig H (1961) Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Article  Google Scholar 

  • Dupalova T, Sracek O, Vencelides Z, Žák K (2012) The origin of thermal waters in the northeastern part of the Eger Rift, Czech Republic. Appl Geochem 27:689–702

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Farías P, Gallastegui G, Lodeiro FG, Marquínez J, Parra LM, Martínez-Catalán P, Maciá JG, Fernández LR (1987) Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central. Mem Mus Lab Min Geol Fac Ciênc Univ Porto 1:411–431

    Google Scholar 

  • Ferreira N, Iglésias M, Noronha F, Pereira E, Ribeiro A, Ribeiro ML (1987) Granitóides da Zona Centro-Ibérica e seu enquadramento geodinâmico. In: Bea F, Carnicero A, Gonzalo JC, López Plaza M, Rodríguez Alonso MD (eds) Geología de los Granitóides y Rocas Asociadas del Macizo Hespérico. Editorial Rueda, Madrid, pp 37–51

    Google Scholar 

  • Florida International University (2012). http://www2.fiu.edu/pricer/StableIsotopes_2010. Accessed 5 Jun 2012

  • Fontes JCh, Garnier JM (1979) Determination of the initial activity of the total dissolved carbon. A review of existing models and a new approach. Water Resour Res 12:399–413

    Article  Google Scholar 

  • Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103

    Article  Google Scholar 

  • Gallagher D, McGee EJ, Kalin RM, Mitchell PI (2000) Performance of models for radiocarbon dating of groundwater: an appraisal using selected Irish aquifers. Radiocarbon 42(2):235–248

    Google Scholar 

  • Geyh M (2000) Groundwater saturated and unsaturated zone. Environmental isotopes in hydrological cycle. Principles and applications. IHP-V Technical Documents in Hydrology, 39 (IV), UNESCO, Paris

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth and Planet. Sci Lett 113(4):495–510

    Google Scholar 

  • Giggenbach WF, Corrales-Soto R (1992) Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province, Coast Rica. Appl Geochem 7(4):309–332

    Article  Google Scholar 

  • Gonfiantini R, Roche MA, Olivry JC, Fontes JCh, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167

    Article  Google Scholar 

  • Greber E (1994) Deep circulation of CO2-rich palaeowaters in a seismically active zone (Kuzuluk/Adaparazi, northwestern Turkey). Geothermics 23(2):151–174

    Article  Google Scholar 

  • Griesshaber E, O’Nions RK, Oxburgh ER (1992) Helium and carbon isotope systematics in crustal fluids from Eifel, the Rhine Graben and Black Forest. F.R.G. Chem Geol 99(4):213–235

    Article  Google Scholar 

  • Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2011) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63(6):1355–1368

    Article  Google Scholar 

  • Hansen LK, Jakobsen R, Postma D (2001) Methanogenesis in a shallow sandy aquifer, Rømø, Denmark. Geochim Cosmochim Acta 65:2925–2935

    Article  Google Scholar 

  • Horvatincic N, Srdoc D, Krajcar Bronic I, Pezdic J, Kapelj S, Sliepcevic A (1996) A study of geothermal waters in northwest Croatia and east Slovenia. In: IAEA (ed) Isotopes in water resources management, vol 2. IAEA, Vienna, pp 470–474

    Google Scholar 

  • Humphreys E, Hessler E, Dueker K, Farmer GL, Erslev E, Atwater T (2003) How Laramide-age hydration of north American lithosphere by the Farallon slab controlled subsequent activity in the western United States. Int Geol Rev 45:575–595

    Article  Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Article  Google Scholar 

  • Jiráková H, Huneau F, Hrkal Z, Celle-Jeanton H, Le Coustumer P (2010) Carbon isotopes to constrain the origin and circulation pattern of groundwater in the north-western part of the Bohemian Cretaceous Basin (Czech Republic). Appl Geochem 25:1265–1279

    Article  Google Scholar 

  • Krásný J (2001) Carlsbad mineral water origin in context of Post-Variscan development in central Europe. In: Seiler KP, Wohnlich S (eds) New approaches to characterising groundwater flow. Balkema, Netherlands, pp 989–993

    Google Scholar 

  • Krásný J (2007) Analysing palaeohydrogeologic and palaeoclimatic development of central Europe: a key top mineral water origin in the Bohemian Massif. In: Proceedings of the Symposium on Thermal and Mineral Waters in Hard Rock Terrains, IAH-PG, pp 7–21

  • Leybourne MI, Clark ID, Goodfellow WD (2006) Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and water–rock reactions. Chem Geol 231:300–325

    Article  Google Scholar 

  • Liu X, Song XF, Zhang YH, Xia J, Zhang XC, Yu JJ, Long D, Li FD, Zhang B (2011) Spatio-temporal variations of delta H-2 and delta O-18 in precipitation and shallow groundwater in the Hilly Loess Region of the Loess Plateau, China. Environ Earth Sci 63(5):1105–1118

    Article  Google Scholar 

  • Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105:541–549

    Article  Google Scholar 

  • Majumder RK, Halim MA, Saha BB, Ikawa R, Nakamura T, Kagabu M, Shimada J (2011) Groundwater flow system in Bengal Delta, Bangladesh revealed by environmental isotopes. Environ Earth Sci 64(5):1343–1352

    Article  Google Scholar 

  • Marques JM, Carreira PM, Aires-Barros L, Graça RC (2000) Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and interpretation. Environ Geol 40(1,2):53–63

    Article  Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in Mid- Ocean Ridge basalts: assessment of shallow-level fractionation and characterisation of source composition. Geochim Cosmochim Acta 63:3619–3633

    Article  Google Scholar 

  • May F (2005) Alteration of wall rocks by CO2-rich water ascending in fault zones: natural analogues for reactions induced by CO2 migrating along faults in siliciclastic reservoir and cap rocks. Oil Gas Sci Technol: Rev IFP 60(1):19–32

    Article  Google Scholar 

  • Mook WG (2000) Introduction theory methods review. In: Environmental isotopes in hydrological cycle. Principles and applications. IHP-V Technical Documents in Hydrology, 39(I), UNESCO, Paris

  • Moreira A, Simões M (1988) Geological map of Portugal. Arcos de Valdevez-1D (1:50000). SGP (Portuguese Geological Survey), Lisbon

  • Moser H, Wolf M, Fritz P, Fontes J-Ch, Florkowski T, Payne B (1989) Deuterium, oxygen-18 and tritium in Stripa groundwater. Geochim Cosmochim Acta 5:1757–1763

    Article  Google Scholar 

  • Nascimento IB (2000) Contribution to the knowledge of the groundwaters from Monção region. MSc dissertation, Instituto Superior Técnico, Technical University of Lisbon

  • Pauwels H, Fouillac C, Goff F, Vuataz FD (1997) The isotopic and chemical composition of CO2-rich thermal waters in the Mont-Dore region (Massif-Central, France). Appl Geochem 12(4):411–427

    Article  Google Scholar 

  • Pérez NM, Nakai S, Wakita H, Albert-Bertrán JF, Redondo R (1996) Preliminary results on 3He/4He isotopic ratios in terrestrial fluids from Iberian Peninsula: seismotectonic and neotectonic implications. Geogaceta 20(4):830–833

    Google Scholar 

  • Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (central Italy): a geochemical and isotope approach. Environ Earth Sci 63(1):11–30

    Article  Google Scholar 

  • Ribeiro ML, Moreira A (1986) Geological map of Portugal. Monção-1B (1:50000). SGP (Portuguese Geological Survey), Lisbon

  • Ribeiro A, Quesada C, Dallmeyer RD (1990) Geodynamic evolution of the Iberian Massif. In: Dallmeyer RD, Martínez-García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 399–410

    Chapter  Google Scholar 

  • Rihs S, Condomines M, Poidevin JL (2000) Long-term behavior of continental hydrothermal systems: U-series study of hydrothermal carbonates from French Massif central (Allier Valley). Geochim Cosmochim Acta 64:3189–3199

    Article  Google Scholar 

  • Schermerhorn LJG (1956) The age of the Beira Schists (Portugal). Boletim da Sociedade Geológica de Portugal XII(1/2):77–100

    Google Scholar 

  • Schofield S, Jankowski J (2004) Hydrochemistry and isotopic composition of Na-HCO3-rich groundwaters from Ballimore region, central New South Wales, Australia. Chem Geol 211:111–134

    Article  Google Scholar 

  • Sherwood Lollar B, Ballentine CJ, O’Nions RK (1997) The fate of mantle-derived carbon in continental sedimentary basin: integration of C/He relationships and stable isotope signatures. Geochim Cosmochim Acta 61(11):2295–2307

    Article  Google Scholar 

  • Soares de Carvalho G (1992) Quaternary and cenozoic deposits. In: Pereira E (ed) Report on the geological map of Portugal Sheet no 1 (1/200000). Geological Survey, Lisbon, pp 47–50

    Google Scholar 

  • Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry, the terrestrial environment, vol 1. Elsevier Science Publication, Amsterdam, pp 179–226

    Google Scholar 

  • Wang JY, Pang ZH (1995) Application of isotope and geochemical techniques to geothermal exploitation in southeast—a review. In: IAEA (ed) Isotope and geochemical techniques applied to geothermal investigations. TECDOC 788, IAEA, Vienna, pp 9–20

  • Xumei M, Yanxin W, Chudaev OV, Xun W (2009) Geochemical evidence of gas sources of CO2-rich cold springs from Wudalianchi, northeast China. J Earth Sci 20(6):959–970

    Article  Google Scholar 

  • Yurtsever Y, Gat JR (1981) Atmospheric waters. In: IAEA (eds) Stable isotope hydrology. Deuterium and Oxygen-18 in the water cycle. Technical Report Series 210, IAEA, Vienna, pp 103–142

Download references

Acknowledgments

The authors would like to express their thanks to UNICER Bebidas for the help in the fieldwork campaigns. This research was developed under the scope of the POCTI/CTA/45159/2002 R&D Project DISGAS—Dissolved gases in subsurface hydrology—CO2-rich thermomineral waters (N-Portugal), funded by the Portuguese Foundation for Science and Technology (FCT) and FEDER EU Programme. The authors would like to acknowledge the anonymous reviewers for their comments and suggestions which were extremely helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Carreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreira, P.M., Marques, J.M., Carvalho, M.R. et al. Carbon isotopes and geochemical processes in CO2-rich cold mineral water, N-Portugal. Environ Earth Sci 71, 2941–2953 (2014). https://doi.org/10.1007/s12665-013-2671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2671-x

Keywords

Navigation