Skip to main content

Advertisement

Log in

Reactivity of sandstone and siltstone samples from the Ketzin pilot CO2 storage site-Laboratory experiments and reactive geochemical modeling

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To evaluate mineralogical-geochemical changes within the reservoir of the Ketzin pilot CO2 storage site in Brandenburg, Germany, two sets of laboratory experiments on sandstone and siltstone samples from the Stuttgart Formation have been performed. Samples were exposed to synthetic brine and pure CO2 at experimental conditions and run durations of 5.5 MPa/40 °C/40 months for sandstone and 7.5 MPa/40 °C/6 months for siltstone samples, respectively. Mineralogical changes in both sets of experiments are generally minor making it difficult to differentiate natural variability of the whole rock samples from CO2-induced alterations. Results of sandstone experiments suggest dissolution of the anorthite component of plagioclase, anhydrite, K-feldspar, analcime, hematite and chlorite + biotite. Dissolution of the anorthite component of plagioclase, anhydrite and K-feldspars is also observed in siltstone experiments. In an inverse modeling approach, an extensive set of equilibrium simulations was set up in order to reproduce the experimental observations of the sandstone experiments. Simulations generally show fairly good matches with the experimental observations. Best matches with measured brine data are obtained from mineral combinations of albite, analcime, anhydrite, dolomite, hematite, illite, and kaolinite. The major discrepancies during equilibrium modeling, however, are reactions involving Fe2+ and Al3+. The best matching subsets of the equilibrium models were finally run including kinetic rate laws. These simulations reveal that experimentally determined brine data was well matched, but reactions involving K+ and Fe2+ are not fully covered. The modeling results identified key primary minerals as well as key chemical processes, but also showed that the models are not capable of covering all possible contingencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279

    Article  Google Scholar 

  • Bateman K, Turner G, Pearce JM, Noy DJ, Birchall D, Rochelle CA (2005) Large-scale column experiment: study of CO2, porewater, rock reactions and model test case. Oil Gas Sci Technol Rev IFP 60(1):161–175

    Article  Google Scholar 

  • Benbow S, Metcalfe R, Wilson J (2008) Pitzer databases for use in thermodynamic modeling. Quintessa Technical Memorandum (unpublished)

  • Blum AE, Stillings LL (1995) Feldspar dissolution kinetics. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Washington, DC, pp 291–351

    Google Scholar 

  • Cantucci B, Montegrossi G, Vaselli O, Tassi F, Quattrocchi F, Perkins EH (2009) Geochemical modeling of CO2 storage in deep reservoirs: the Weyburn Project (Canada) case study. Chem Geol 265(1–2):181–197

    Article  Google Scholar 

  • Czernichowski-Lauriol I, Sanjuan B, Rochelle C, Bateman K, Pearce JM, Blackwell P (1996) Inorganic geochemistry. In: Holloway S (ed) Final report of the Joule II project No. CT92-0031: The underground disposal of carbon dioxide. British Geological Survey, Keyworth, pp 183–276

    Google Scholar 

  • Czernichowski-Lauriol I, Rochelle C, Gaus I, Azaroual M, Pearce J, Durst P (2006) Geochemical interactions between CO2, pore-water and reservoir rock. Adv Geol Storage Carbon Dioxide 65:157–174

    Article  Google Scholar 

  • De Lucia M, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modeling CO2-induced fluid—rock interactions in the Altensalzwedel gas reservoir Part I: from experimental data to a reference geochemical model. Environ Earth Sci 67(2):563–572

    Article  Google Scholar 

  • Driesner T (2007) The system H2O–NaCl. Part II. Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4902–4919

    Article  Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I. Correlation formulae for phase relations in temperature–pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901

    Article  Google Scholar 

  • Fischer S, Liebscher A, Wandrey M (2010) CO2-brine-rock interaction – First results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Chemie der Erde/Geochem 70(3):155–164

    Google Scholar 

  • Fischer S, Zemke K, Liebscher A, Wandrey M (2011) Petrophysical and petrochemical effects of long-term CO2-exposure experiments on brine-saturated reservoir sandstone. Energy Procedia 4:4487–4494

    Article  Google Scholar 

  • Förster A, Norden B, Zinck-Jørgensen K, Frykman P, Kulenkampff J, Spangenberg E, Erzinger J, Zimmer M, Kopp J, Borm G, Juhlin C, Cosma C, Hurter S (2006) Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. Environ Geosci 133:145–161

    Article  Google Scholar 

  • Förster A, Schöner R, Förster H-J, Norden B, Blaschke A-W, Luckert J, Beutler G, Gaupp R, Rhede D (2010) Reservoir characterization of a CO2 storage aquifer: The Upper Triassic Stuttgart Formation in the Northeast German Basin. Mar Pet Geol 27(10):2156–2172

    Article  Google Scholar 

  • Gailhanou H, van Miltenburg J, Rogez J, Olives J, Amouric M, Gaucher E, Blanc P (2007) Thermodynamic properties of anhydrous smectite mx-80, illite imt-2 and mixed-layer illite smectite iscz-1 as determined by calorimetric methods. Part I: heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71(22):5463–5473

    Article  Google Scholar 

  • Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73–89

    Article  Google Scholar 

  • Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modeling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217:319–337

    Article  Google Scholar 

  • Gunter WD, Perkins EH, McCann TJ (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Convers Manag 34:941–948

    Article  Google Scholar 

  • Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers Manag 40:825–843

    Article  Google Scholar 

  • Holloway S (1997) An overview of the underground disposal of carbon dioxide. Energy Convers Manag 38:193–198

    Article  Google Scholar 

  • IPCC (2005) Intergovernmental panel on climate change special report on carbon dioxide capture and storage. Cambridge University Press, New York

    Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47

    Article  Google Scholar 

  • Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon. Appl Geochem 18:1065–1080

    Article  Google Scholar 

  • Kaszuba JP, Janecky DR, Snow MG (2005) Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chem Geol 217:277–293

    Article  Google Scholar 

  • Kempka T, Kühn M (2013) Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environ Earth Sci. doi:10.1007/s12665-013-2614-6

  • Klein E, De Lucia M, Kempka T, Kühn M (2013) Evaluation of long-term mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modeling and reservoir simulation. IJGGC. doi:10.1016/j.ijggc.2013.05.014

  • Köhler SJ, Dufaud F, Oelkers EO (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochim Cosmochim Acta 67:3583–3594

    Article  Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89(B6):4009–4025

    Article  Google Scholar 

  • Lasaga AC (1995) Fundamental approaches to describing mineral dissolution and precipitation rates. Rev Mineral 31:23–86

    Google Scholar 

  • Liu F, Lu P, Griffith C, Hedges SW, Soong Y, Hellevang H, Zhu C (2012) CO2-brine-caprock interaction: reactivity experiments on Eau Claire shale and a review of relevant literature. Int J Greenh Gas Control 7:153–167

    Article  Google Scholar 

  • Luquot L, Andreani M, Gouze P, Camps P (2012) CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation, Otway Basin, Australia). Chem Geol 294–295:75–88

    Article  Google Scholar 

  • Martens S, Kempka T, Liebscher A, Lüth S, Möller F, Myrttinen B, Norden B, Schmidt-Hattenberger C, Zimmer M, Kühn M (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67(2):323–334

    Article  Google Scholar 

  • Martens S, Liebscher A, Möller F, Henninges J, Kempka T, Lüth S, Norden B, Prevedel B, Szizybalski A, Zimmer M, Kühn M (2013) CO2 storage at the Ketzin pilot site, Germany: fourth year of injection, monitoring, modelling and verification. Energy Procedia (in press)

  • Michael K, Golab AV, Shulakova V, Ennis-King JG, Allinson G, Sharma S, Aiken TT (2010) Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int J Greenh Gas Control 4:659–667

    Article  Google Scholar 

  • Moore J, Adams M, Allis R, Lutz S, Rauzi S (2005) Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: an example from Springerville-St. Johns Field, Arizona, and New Mexico. USA. Chem Geol 217:365–385

    Article  Google Scholar 

  • Murphy R, Lammers K, Smirnov A, Schoonen MAA, Strongin DR (2011) Hematite reactivity with supercritical CO2 and aqueous sulfide. Chem Geol 283:210–217

    Article  Google Scholar 

  • Nagy KL (1995) Dissolution and precipitation kinetics of sheet silicates. Rev Mineral 31:173–233

    Google Scholar 

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. US Geological Survey Water-Resources Investigations, Open File Report 2004-1068

  • Palandri JL, Kharaka YK (2005) Ferric iron-bearing sediments as a mineral trap for CO2 sequestration: iron reduction using sulfur-bearing waste gas. Chem Geol 217(3–4):351–364

    Article  Google Scholar 

  • Palandri JL, Rosenbauer RJ, Kharaka YK (2005) Ferric iron in sediments as a novel CO2 mineral trap: CO2–SO2 reaction with hematite. Appl Geochem 20(11):2038–2048

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99–4259

  • Pauwels H, Gaus I, Michel le Nindre Y, Pearce J, Czernichowski-Lauriol I (2007) Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France): lessons for CO2–water–rock interaction assessment and monitoring. Appl Geochem 22:2817–2833

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstones. Springer, New York

    Book  Google Scholar 

  • Pitzer K (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem B 77(2):268–277

    Article  Google Scholar 

  • Prevedel B, Wohlgemuth L, Henninges J, Krüger K, Norden B, Förster A, CO2SINK Drilling Group (2008) The CO2SINK boreholes for geological storage testing. Sci Drill 6:32–37

    Article  Google Scholar 

  • Rochelle CA, Birchall DJ, Bateman K (2002) Geochemical interaction between supercritical CO2 and the Midale formation. I: introduction to fluid–rock interaction experiments. British Geological Survey Commissioned Report Cr/02/289

  • Rochelle CA, Czernichowski-Lauriol I, Milodowski AE (2004) The impact of chemical reactions on CO2 storage in geological formations: a brief review. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide, vol 233. Geological Society, Special Publications, London, pp 87–106

    Google Scholar 

  • Rosenbauer RJ, Koksalan T, Palandri JL (2005) Experimental investigation of CO2–brine–rock interactions at elevated temperature and pressure: implications for CO2 sequestration in deep-saline aquifers. Fuel Proc Technol 86:1581–1597

    Article  Google Scholar 

  • Rosenqvist J, Kilpatrick AD, Yardley BWD (2012) Solubility of carbon dioxide in aqueous fluids and mineral suspensions at 294 K and subcritical pressures. Appl Geol 27:1610–1614

    Article  Google Scholar 

  • Sass BM, Gupta N, Ickes JA, Engelhard MH, Baer DR, Bergman P, Byrer C (1999) Interaction of rock minerals with carbon dioxide and brine: a hydrothermal investigation. In: Conference PROCEEDINGS CD, 1st national conference on carbon sequestration, Washington, DC

  • Schoonen MAA, Sklute EC, Dyar MD, Strongin DR (2011) Reactivity of sandstones under conditions relevant to geosequestration: 1. Hematite-bearing sandstone exposed to supercritical carbon dioxide with aqueous sulfite or sulfide solutions. Chem Geol 296–297:96–102

    Google Scholar 

  • Shiraki R, Dunn TL (2000) Experimental study on water–rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem 15:265–279

    Article  Google Scholar 

  • Smyth RC, Hovorka SD, Lu J, Romanak KD, Partin JW, Wong C, Yang C (2009) Assessing risk to fresh water resources from long term CO2 injection—laboratory and field studies. Energy Procedia 1:1957–1964

    Article  Google Scholar 

  • Wandrey M, Pellizari L, Zettlitzer M, Würdemann H (2011) Microbial community and inorganic fluid analysis during CO2 storage within the frame of CO2SINK—long-term experiments under in situ conditions. Energy Procedia 4:3651–3657

    Article  Google Scholar 

  • Watson MN, Zwingmann N, Lemon NM (2002) The Ladbroke Grove–Katnook carbon dioxide natural laboratory: a recent CO2 accumulation in a lithic sandstone reservoir. Extended abstract E1-5, sixth international conference on greenhouse gas control technologies (GHGT-6), Kyoto, Japan, 6p, October 1–4

  • Wigand M, Carey JW, Schuett H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745

    Article  Google Scholar 

  • Wolery T (1992) Eq3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) ucrl-ma-110662. Technical Report, Lawrence Livermore National Laboratory

  • Würdemann H, Möller F, Kuehn M, Heidug W, Christensen NP, Borm G, Schilling FR, CO2Sink Group (2010) CO2SINK-From site characterisation and risk assessment to monitoring and verification: one year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int J Greenh Gas Control 4:938–951

    Article  Google Scholar 

  • Wiese B, Zimmer M, Nowak M, Pilz P (submitted) Above-zone well-based hydraulic and geochemical monitoring of the CO2 reservoir in Ketzin, Germany. Submitted to Environ Earth Sci

  • Zemke K, Liebscher A, Wandrey M, the CO2SINK Group (2010) Petrophysical analysis to investigate the effects of carbon dioxide storage in a subsurface saline aquifer at Ketzin, Germany (CO2SINK). Int J Greenh Gas Control 4:990–999

    Article  Google Scholar 

  • Zerai B, Saylor BZ, Matisoff G (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Appl Geochem 21:223–240

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding by the German Federal Ministry of Education and Research via GeoEn II and the CO2MAN projects, the latter being funded under the GEOTECHNOLOGIEN Program (this is publication GEOTECH-2051), and by industry partners. Special thanks go to Maren Wandrey and Kornelia Zemke for experimental design and conductance as well as of sample and data provision. We are thankful for technical assistance and support of Rudolf Naumann, Ilona Schäpan, Oona Appelt and Heiko Baschek from GFZ Potsdam, and Peter Czaja from MfN Berlin.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Sebastian Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S., Liebscher, A., De Lucia, M. et al. Reactivity of sandstone and siltstone samples from the Ketzin pilot CO2 storage site-Laboratory experiments and reactive geochemical modeling. Environ Earth Sci 70, 3687–3708 (2013). https://doi.org/10.1007/s12665-013-2669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2669-4

Keywords

Navigation