Skip to main content
Log in

Spatio-temporal variability in remotely sensed surface soil moisture and its relationship with precipitation and evapotranspiration during the growing season in the Loess Plateau, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The distribution and variability of surface soil moisture at regional scales is still poorly understood in the Loess Plateau of China. Spatial and temporal dynamics of surface soil moisture is important due to its impact on vegetation growth and its potential feedback to atmospheric and hydrologic processes. In this study, we analyzed surface soil moisture dynamics and the impacts of precipitation and evapotranspiration on surface soil moisture using remote sensing data during the growing season in 2011 for the Loess Plateau, which contain surface soil moisture, precipitation, vegetation index and evapotranspiration. Results indicate that the areas with low surface soil moisture are mainly located in the semi-arid region. Under dry surface soil moisture, evapotranspiration temporal persistence has a higher positive correlation (0.537) with surface soil moisture temporal persistence, and evapotranspiration is very sensitive to surface soil moisture. But under wet surface soil moisture regime, surface soil moisture temporal persistence has a higher negative correlation (−0.621) with evapotranspiration temporal persistence. Correlation of surface soil moisture and monthly precipitation, evapotranspiration and vegetation index illustrated that precipitation was a significant factor influencing surface soil moisture spatial variance. The correlation coefficients between monthly surface soil moisture and precipitation was varied in different climatic regions, which was 0.304 in arid, 0.364 in semi-arid, 0.490 in transitional and 0.300 in semi-humid regions. Surface soil moisture is more sensitive to precipitation, evapotranspiration, in transitional regions between dry and wet climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LO, Malhi Y, Aragao LEOC et al (2010) Remote sensing detection of droughts in Amazonian forest canopies. New Phytol 187(3):733–750

    Article  Google Scholar 

  • Banks CJ, Gommenginger CP, Srokosz MA et al (2012) Validating SMOS ocean surface salinity in the Atlantic with argo and operational ocean model data. IEEE Trans Geosci Remote Sens 50(5):1688–1702

    Article  Google Scholar 

  • Berthon L, Mialon A, Cabot F et al (2012) Catds level 3 data product description. CESBIO, Toulouse

  • Bi HX, Li XY, Liu X et al (2009) A case study of spatial heterogeneity of soil moisture in the Loess Plateau, western China: a geostatistical approach. Int J Sedim Res 24(1):63–73

    Article  Google Scholar 

  • Bircher S, Balling JE, Skou N et al (2012) Validation of SMOS brightness temperatures during the HOBE airborne campaign, Western Denmark. IEEE Trans Geosci Remote Sens 50(5):1468–1482

    Article  Google Scholar 

  • Bowler J, Chen K, Yuan B (1987) Systematic variations in loess source areas: evidence from Qaidan and Qinghai basins, west China. In: Liu TS (ed) Aspects of Loess research. China Ocean Press, Beijing, pp 164–174

  • Chen HS, Zhang W, Wang KL et al (2010) Soil moisture dynamics under different land uses on karst hillslope in northwest Guangxi. China Environ Earth Sci 61(6):1105–1111

    Article  Google Scholar 

  • Dente L, Su ZB, Wen J (2012) Validation of SMOS soil moisture products over the Maqu and Twente regions. Sensors 12(8):9965–9986

    Article  Google Scholar 

  • D’Odorico P, Caylor K, Okin GS et al (2007) On soil moisture—vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res Biogeosci 112:G04010. doi:10.1029/2006JG000379

  • Fan J, Jones SB, Qi LB et al (2012) Effects of precipitation pulses on water and carbon dioxide fluxes in two semiarid ecosystems: measurement and modeling. Environ Earth Sci 67(8):2315–2324

    Article  Google Scholar 

  • Fleming K, Awange JL, Kuhn M et al (2011) Evaluating the TRMM 3B43 monthly precipitation product using gridded rain gauge data over Australia. Aust Meteorol Ocean 61(3):171–184

    Google Scholar 

  • Flores AN, Ivanov VY, Entekhabi D et al (2009) Impact of hillslope-scale organization of topography, soil moisture, soil temperature, and vegetation on modeling surface microwave radiation emission. IEEE Trans Geosci Remote Sens 47(8):2557–2571

    Article  Google Scholar 

  • Gherboudj I, Magagi R, Goita K et al (2012) Validation of SMOS data over agricultural and boreal forest areas in Canada. IEEE Trans Geosci Remote Sens 50(5):1623–1635

    Article  Google Scholar 

  • He X, Tang K, Zhang X (2004) Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years. Mt Res Dev 24(4):342–347

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han DW et al (2012) Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J Atmos Sol-Terr Phys 77:194–208

    Article  Google Scholar 

  • Jackson TJ, Bindlish R, Cosh MH et al (2012) Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the US. IEEE Trans Geosci Remote Sens 50(5):1530–1543

    Article  Google Scholar 

  • Jacobs JM, Mohanty BP, Hsu EC et al (2004) SMEX02: field scale variability, time stability and similarity of soil moisture. Remote Sens Environ 92(4):436–446

    Article  Google Scholar 

  • Jia SF, Zhu WB, Lu AF et al (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens Environ 115(12):3069–3079

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP et al (2001) Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans Geosci Remote Sens 39(8):1729–1735

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Richaume P et al (2012) The SMOS soil moisture retrieval algorithm. IEEE Trans Geosci Remote Sens 50(5):1384–1403

    Article  Google Scholar 

  • Kim S (2012) Characterization of annual soil moisture response pattern on a hillslope in Bongsunsa Watershed, South Korea. J Hydrol 448:100–111

    Article  Google Scholar 

  • Kimura R, Shinoda M (2012) Estimation of surface soil water content from surface temperatures in dust source regions of Mongolia and China. Environ Earth Sci 65(6):1847–1853

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo ZC et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T et al (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Tech 15(3):809–817

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O et al (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39(12):1965–1982

    Article  Google Scholar 

  • Legates DR, Mahmood R, Levia DF et al (2011) Soil moisture: a central and unifying theme in physical geography. Prog Phys Geog 35(1):65–86

    Article  Google Scholar 

  • Li ZC, Wei ZG, Wang C et al (2012) Simulation and improvement of common land model on the bare soil of Loess Plateau underlying surface. Environ Earth Sci 66(4):1091–1097

    Article  Google Scholar 

  • Liu T (1985) Loess and the environment. China Ocean Press, Beijing

    Google Scholar 

  • Liu XH, He BL, Li ZX et al (2011) Influence of land terracing on agricultural and ecological environment in the loess plateau regions of China. Environ Earth Sci 62(4):797–807

    Article  Google Scholar 

  • Mendez-Barroso LA, Vivoni ER, Watts CJ et al (2009) Seasonal and interannual relations between precipitation, surface soil moisture and vegetation dynamics in the North American monsoon region. J Hydrol 377(1–2):59–70

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M et al (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536

    Article  Google Scholar 

  • Mu QZ, Jones LA, Kimball JS, et al (2009) Satellite assessment of land surface evapotranspiration for the pan-Arctic domain. Water Resour Res 45: W09420. doi:10.1029/2008WR007189

  • Mu QZ, Zhao MS, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800

    Article  Google Scholar 

  • Njoku EG, Li L (1999) Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans Geosci Remote Sens 37(1):79–93

    Article  Google Scholar 

  • Sanchez N, Martinez-Fernandez J, Scaini A et al (2012) Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain). IEEE Trans Geosci Remote Sens 50(5):1602–1611

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161

    Article  Google Scholar 

  • Shi H, Shao M (2000) Soil and water loss from the Loess Plateau in China. J Arid Environ 45(1):9–20

    Article  Google Scholar 

  • Srivastava PK, Han DW, Rico-Ramirez MA et al (2012) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50(9):1250–1265

    Article  Google Scholar 

  • Thakur JK, Srivastava P, Pratihast AK et al (2012a) Estimation of evapotranspiration from wetlands using geospatial and hydrometeorological data, geospatial techniques for managing environmental resources. Springer, Heidelberg, pp 53–67

  • Thakur JK, Srivastava PK, Singh SK et al (2012b) Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey. Reg Environ Change 12(1):133–144

    Article  Google Scholar 

  • Vivoni ER, Gebremichael M, Watts CJ et al (2008) Comparison of ground-based and remotely-sensed surface soil moisture estimates over complex terrain during SMEX04. Remote Sens Environ 112(2):314–325

    Article  Google Scholar 

  • Wang LL, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Frontiers Earth Sci China 3(2):237–247

    Google Scholar 

  • Wang J, Fu BJ, Qiu Y et al (2001) Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau. China Environ Geol 41(1–2):113–120

    Article  Google Scholar 

  • Wang J, Fu BJ, Qiu Y et al (2003) The effects of land use and its patterns on soil properties in a small catchment of the Loess Plateau. J Environ Sci 15(2):263–266

    Google Scholar 

  • Wang YQ, Shao MA, Zhu YJ et al (2011) Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric For Meteorol 151(4):437–448

    Google Scholar 

  • Wang L, D’Odorico P, Evans JP et al (2012a) Dryland ecohydrology and climate change: critical issues and technical advances. Hydrol Earth Syst Sci 16(8):2585–2603

    Article  Google Scholar 

  • Wang S, Fu BJ, Gao GY et al (2012b) Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol Earth Syst Sci 16(8):2883–2892

    Article  Google Scholar 

  • Xiong J, Mao DF, Yan NN (2009) Evaluation of TRMM satellite precipitation product in hydrologic simulations of Hai Basin. River Basin Res Plan Approach 180–186

  • Yao XL, Fu BJ, Lu YH et al (2012) The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China. J Soil Sediment 12(5):694–703

    Article  Google Scholar 

  • Zakharova E, Calvet JC, Lafont S et al (2012) Spatial and temporal variability of biophysical variables in southwestern France from airborne L-band radiometry. Hydrol Earth Syst Sci 16(6):1725–1743

    Article  Google Scholar 

  • Zhang JT, Ru WM, Li B (2006) Relationships between vegetation and climate on the Loess Plateau in China. Folia Geobot 41(2):151–163

    Article  Google Scholar 

  • Zhang T, Wen J, Su Z et al (2009) Soil moisture mapping over the Chinese Loess Plateau using ENVISAT/ASAR data. Adv Space Res 43(7):1111–1117

    Article  Google Scholar 

  • Zhao PP, Shao MA (2010) Soil water spatial distribution in dam farmland on the Loess Plateau, China. Acta Agric Scand Sect B-Soil Plant Sci 60(2):117–125

    Google Scholar 

  • Zhou P, Wen AB, Zhang XB et al (2013) Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ Earth Sci 68(3):633–639

    Article  Google Scholar 

  • Zhu YJ, Shao MA (2008) Variability and pattern of surface moisture on a small-scale hillslope in Liudaogou catchment on the northern Loess Plateau of China. Geoderma 147(3–4):185–191

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Science Foundation of Gansu Province (No.1208RJYA063) and the “12th Five-Year Plan” national science and technology support program “The ecological restoration technology integration and experiment demonstration of degraded forests—the grassland in Loess hilly area” (No. 2011BAC07B04). The authors are grateful to the reviews for their helpful comments and suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Liu, L., Duan, Z. et al. Spatio-temporal variability in remotely sensed surface soil moisture and its relationship with precipitation and evapotranspiration during the growing season in the Loess Plateau, China. Environ Earth Sci 71, 1809–1820 (2014). https://doi.org/10.1007/s12665-013-2585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2585-7

Keywords

Navigation