Skip to main content
Log in

Partial derivatives of thermodynamic state properties for dynamic simulation

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The thermodynamic behaviour of fluids can be accurately described by equations of state (EoS) in terms of the Helmholtz energy, with temperature and density as independent variables. The known properties in dynamic simulations of power or refrigeration cycles are usually different from temperature and density. Partial derivatives of state properties with respect to the known properties of the simulation have to be transformed into partial derivatives with respect to the independent variables of the EoS. This transformation is demonstrated step by step for the single-phase region, along the saturation line and within the two-phase region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akasaka R (2008) A reliable and useful method to determine the saturation state from Helmholtz energy equations of state. J Therm Sci Technol 3(3):442–451. doi:10.1299/jtst.3.442

    Article  Google Scholar 

  • Arnas AÖ (2000) On the physical interpretation of the mathematics of thermodynamics. Int J Therm Sci 39(5):551–555. doi:10.1016/S1290-0729(00)00249-0

    Article  Google Scholar 

  • Baehr HD (1998) Thermodynamische Fundamentalgleichungen und charakteristische Funktionen. Forschung im Ingenieurwesen 64(1):35–43. doi:10.1007/PL00010764

    Article  Google Scholar 

  • Baehr HD, Tillner-Roth R (1995) Thermodynamic properties of environmentally acceptable refrigerants. Springer, Berlin

    Google Scholar 

  • Bauer O (1999) Modelling of two-phase flows with Modelica. Master’s Thesis, Department of Automatic Control, Lund University, Sweden

  • Bridgman PW (1914) A complete collection of thermodynamic formulas. Phys Rev 3(4):273–281. doi:10.1103/PhysRev.3.273

    Article  Google Scholar 

  • Carroll B (1965) On the use of Jacobians in thermodynamics. J Chem Educ 42(4):218. doi:10.1021/ed042p218

    Article  Google Scholar 

  • Crawford FH (1949) Jacobian methods in thermodynamics. Am J Phys 17(1):1–5. doi:10.1119/1.1989489

    Article  Google Scholar 

  • Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Conn Acad Arts Sci 2:382–404

    Google Scholar 

  • Hakala RW (1964) A method for relating thermodynamic first derivatives. J Chem Educ 41(2):99. doi:10.1021/ed041p99

    Article  Google Scholar 

  • Iglesias-Silva GA, Bonilla-Petriciolet A, Eubank PT, Holste JC, Hall KR (2003) An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases. Fluid Phase Equilib 210(2):229–245. doi:10.1016/S0378-3812(03)00171-7

    Article  Google Scholar 

  • Lemmon EW, Jacobsen RT (2005) A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125). J Phys Chem Ref Data 34(1):69–108. doi:10.1063/1.1797813

    Article  Google Scholar 

  • Lemmon EW, Jacobsen RT, Penoncello SG, Friend DG (2000) Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J Phys Chem Ref Data 29(3):331–385. doi:10.1063/1.1285884

    Article  Google Scholar 

  • Lemmon EW, Huber ML, McLinden MO (2010) NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, 9th edn. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg

  • O’Connell J, Haile J (2005) Thermodynamics: fundamentals for applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Richter C (2008) Proposal of new object-oriented equation-based model libraries for thermodynamic systems. Dissertation, TU Braunschweig

  • Shaw AN (1935) The derivation of thermodynamical relations for a simple system. Philos Trans R Soc Lond Ser A. Math Phys Sci 234(740):299–328. doi:10.1098/rsta.1935.0009

    Article  Google Scholar 

  • Somerton CW, Arnas AÖ (1985) On the use of Jacobians to reduce thermodynamic derivatives. Int J Mech Eng Educ 13(1):9–18

    Google Scholar 

  • Span R (2000) Multiparameter equations of state: an accurate source of thermodynamic property data. Springer, Berlin

    Book  Google Scholar 

  • Span R, Wagner W, Lemmon EW, Jacobsen RT (2001) Multiparameter equations of state—recent trends and future challenges. Fluid Phase Equilib 183–184(1–2):1–20. doi:10.1016/S0378-3812(01)00416-2

    Article  Google Scholar 

  • Thorade M, Saadat A (2012) HelmholtzMedia—a fluid properties library. In: Proceedings of the 9th International Modelica Conference. doi:10.3384/ecp1207663

  • Tummescheit H (2002) Design and implementation of object-oriented model libraries using Modelica. Dissertation, Lund University

  • Wagner W, Kretzschmar H (2008) International steam tables: properties of water and steam based on the industrial formulation IAPWS-IF97. Springer, Berlin. doi:10.1007/978-3-540-74234-0

    Book  Google Scholar 

  • Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535. doi:10.1063/1.1461829

    Article  Google Scholar 

  • Wagner W, Cooper JR, Dittmann A, Kijima J, Kretzschmar HJ, Kruse A, Mareš R, Oguchi K, Sato H, Stöcker I, Šifner O, Takaishi Y, Tanishita I, Trübenbach J, Willkommen T (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power 122(1):150–184. doi:10.1115/1.483186

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Eric W. Lemmon for answering an abundance of questions and for providing a modified version of RefProp (Lemmon et al. 2010) capable of outputting additional intermediate results. The comments by Ian H. Bell and an anonymous reviewer are also much appreciated. This work was funded by the Federal Ministry of Education and Research of Germany (GeoEn II, Grant 03G0767A) and the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Qualification of geothermal technology - integration of subsurface and surface systems, Grant 0325217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthis Thorade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorade, M., Saadat, A. Partial derivatives of thermodynamic state properties for dynamic simulation. Environ Earth Sci 70, 3497–3503 (2013). https://doi.org/10.1007/s12665-013-2394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2394-z

Keywords

Navigation