Skip to main content
Log in

3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization: different sensitivities for different mechanisms of heat transport

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Based on a numerical model of the Northeast German Basin (NEGB), we investigate the sensitivity of the calculated thermal field as resulting from heat conduction, forced and free convection in response to consecutive horizontal and vertical mesh refinements. Our results suggest that computational findings are more sensitive to consecutive horizontal mesh refinements than to changes in the vertical resolution. In addition, the degree of mesh sensitivity depends strongly on the type of the process being investigated, whether heat conduction, forced convection or free thermal convection represents the active heat driver. In this regard, heat conduction exhibits to be relative robust to imposed changes in the spatial discretization. A systematic mesh sensitivity is observed in areas where forced convection promotes an effective role in shorten the background conductive thermal field. In contrast, free thermal convection is to be regarded as the most sensitive heat transport process as demonstrated by non-systematic changes in the temperature field with respect to imposed changes in the model resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bayer U, Scheck M, Koehler M (1997) Modeling of the 3D thermal field in the northeast German basin. Geol Rundsch 86:241–251. doi:10.1007/s005310050137

    Article  Google Scholar 

  • Bayer U, Clausnitzer V, Fuhrmann J (2002) Unsteady thermal convection in the north-east German Basin. Mathematics Subject Classification. ISSN: 0946-8633. Weierstraß-Institut für Angewandte Analysis und Stochastik

  • Cacace M, Kaiser BO, Lewerenz B, Scheck-Wenderoth M (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chem der Erde 70:33–46. doi:10.1016/j.chemer.2010.05.017

    Article  Google Scholar 

  • Clauser C (1997) Geothermal energy use in Germany—status and potential. Geothermics 26:203–220. doi:10.1016/S0375-6505(96)00040-5

    Article  Google Scholar 

  • Clauser C (ed) (2003) Numerical simulations of reactive flow in hot aquifers: SHEMAT and processing SHEMAT. Springer, Berlin

    Google Scholar 

  • Cui T, Yang J, Samson IM (2010) Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. J Geochem Expl 106:69–76. doi:10.1016/j.gexplo.2009.12.008

    Article  Google Scholar 

  • Della Vedova B, Vecellio C, Bellani S, Tinivella U (2008) Thermal modelling of the Larderello geothermal field (Tuscany, Italy). Environ Earth Sci 97(317):332. doi:10.1007/s00531-007-0249-0

    Google Scholar 

  • DHI-WASY (2009) FEFLOW 6 finite element subsurface flow & transport simulation system. Users Manual, WASY GmbH, Institute for Water Resource Planning and System Research, Berlin

  • Diersch H-JG (1983) On finite element upwinding and its numerical performance in simulating coupled convective transport processes. Z angew Math Mech. 63:479–488. doi:10.1002/zamm.19830631003

    Article  Google Scholar 

  • Diersch H-JG (2009a) FEFLOW finite element subsurface flow & transport simulation system. Reference Manual, WASY GmbH, Institute for Water Resource Planning and System Research, Berlin

  • Diersch H-JG (2009b) Error norms used in FEFLOW. White Pap II. WASY GmbH, Institute for Water Resource Planning and System Research, Berlin, pp 109–115

  • Diersch H-JG (2009c) Using and testing the algebraic multigrid equations solver SAMG in FEFLOW. White Pap III. WASY GmbH, Institute for Water Resource Planning and System Research, Berlin, pp 25–37

  • Diersch H-JG, Kolditz O (1998) Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv Water Resour 21:401–425. doi:10.1016/S0309-1708(97)00003-1

    Article  Google Scholar 

  • Diersch H-JG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944. doi:10.1016/S0309-1708(02)00063-5

    Article  Google Scholar 

  • Edelsbrunner H, Shah NR (1994) Triangulating topological spaces. In: SCG’94 Proceedings of the 10th annual symposium on computational geometry, pp 285–292

  • Elder JW (1967) Transient convection in a porous medium. J Fluid Mech 27:609–623. doi:10.1017/S0022112067000576

    Article  Google Scholar 

  • Frolkovič P, De Schepper H (2001) Numerical modelling of convection dominated transport coupled with density driven flow in porous media. Adv Water Resour 24:63–72. doi:10.1016/S0309-1708(00)00025-7

    Article  Google Scholar 

  • Garven G, Freeze RA (1984) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: 1. Mathematical and numerical model. Am J Sci 184:1085–1124. doi:10.2475/ajs.284.10.1085

    Article  Google Scholar 

  • Garven G, Raffensperger JP, Dumoulin JA, Bradley DA, Young LE, Kelley KD, Leach DL (2003) Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska: implications for the genesis of the Red Dog PbZnAgBa ore district. J Geochem Expl 78(79):215–219. doi:10.1016/S0375-6742(03)00109-2

    Article  Google Scholar 

  • Graf T, Boufadel MC (2011) Effect of viscosity, capillarity and grid spacing on thermal variable-density flow. J Hydrol 400:41–57. doi:10.1016/j.jhydrol.2011.01.025

    Article  Google Scholar 

  • Harcouët-Menou V, Guillou-Frottier L, Bonneville A, Adler PM, Mourzenko V (2009) Hydrothermal convection in and around mineralized fault zones: insights from two- and 3D numerical modeling applied to the Ashanti belt, Ghana. Geofluids 9:116–137. doi:10.1111/j.1468-8123.2009.00247.x

    Article  Google Scholar 

  • Hebig K, Ito N, Scheytt T, Marui A (2011) Review: deep groundwater research with focus on Germany. Hydrogeol J 20:227–243. doi:10.1007/s10040-011-0815-1

    Article  Google Scholar 

  • Holzbecher E (1998) Modelling density-driven flow in porous media—principles, numerics, software. Springer, Berlin

    Book  Google Scholar 

  • Holzbecher E, Yusa Y (1995) Numerical experiments on free and forced convection in porous media. Int J Heat Mass Transf 38:2109–2115. doi:10.1016/0017-9310(94)00324-O

    Article  Google Scholar 

  • Hurtig E, Schlosser P (1976) Vertical changes of the heat flow in boreholes in the North-German sedimentary basin. In: Adam A (ed) Geoelectric and geothermal studies (East-Central Europe, Soviet Asia), KAPG Geophysical Monograph. Akademiai Kiado, Budapest, pp 395–401

  • Kaiser BO, Cacace M, Scheck-Wenderoth M, Lewerenz B (2011) Characterization of main heat transport processes in the Northeast German Basin: constraints from 3-D numerical models. Geochem Geophys Geosyst 12:Q07011. doi:10.1029/2011GC003535

    Article  Google Scholar 

  • Kitware Inc. (2010) The VTK User’s Guide, ISBN-13: 978-1-930934-23-8, Printed in Columbia

  • Kolditz O, Ratke R, Diersch H-JG, Zielke W (1998) Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv Water Resour 21:27–46. doi:10.1016/S0309-1708(96)00034-6

    Article  Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs J, Fischer T, Görke U, Kalbacher T, Kosakowski G, McDermott C, Park C, Radu F, Rink K, Shao H, Shao H, Sun. F, Sun Y, Singh A, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci (currently online only). doi:10.1007/s12665-012-1546-x

  • Lund JW, Freeston DH, Boyd TL (2011) Direct utilization of geothermal energy 2010 worldwide review. Geothermics 40:159–180. doi:10.1016/j.geothermics.2011.07.004

    Article  Google Scholar 

  • Magri F (2005) Mechanismus und Fluiddynamik der Salzwasserzirkulation im Nordostdeutschen Becken: Ergebnisse thermohaliner numerischer Simulationen. Dissertation Sci Tech Rep STR05/12, German Research Center for Geoscience, Potsdam

  • Magri F (2009) Derivation of the coefficients of thermal expansion and compressibility for use in FEFLOW (implementation code in C++). White Pap III. WASY GmbH, Institute for Water Resource Planning and System Research, Berlin, pp. 13-23

  • Magri F, Bayer U, Clausnitzer V, Jahnke C, Diersch H-JG, Fuhrmann J, Möller P, Pekdeger A, Tesmer M, Voigt H (2005) Deep reaching fluid flow close to convective instability in the NE German basin—results from water chemistry and numerical modelling. Tectonophysics 397:5–20. doi:10.1016/j.tecto.2004.10.006

    Article  Google Scholar 

  • Magri F, Bayer U, Maiwald U, Otto R, Thomsen C (2009) Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid-transport processes in a shallow salt-dome environment. Geofluids 9:182–194. doi:10.1111/j.1468-8123.2009.00242.x

    Article  Google Scholar 

  • Musuuza JL, Attinger S, Radu FA (2009) An extended stability criterion for density-driven flows in homogeneous porous media. Adv Water Resour 32:796–808. doi:10.1016/j.advwatres.2009.01.012

    Article  Google Scholar 

  • Nield DA, Bejan A (2006) Convection in porous media. Springer, New York

    Google Scholar 

  • Noack V, Scheck-Wenderoth M, Cacace M (2012) Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin) Environ Earth Sci (currently online only). doi:10.1007/s12665-012-1614-2

  • Norden B, Förster A (2006) Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. AAPG Bull 90:939–962

    Article  Google Scholar 

  • Ondrak R, Wenderoth F, Scheck M, Bayer U (1998) Integrated geothermal modeling on different scales in the Northeast German basin. Geol Rundsch 87:32–42. doi:10.1007/s005310050187

    Article  Google Scholar 

  • Pestov I (2000) Thermal convection in the Great Artesian Basin, Australia. Water Resour Manag 14:391–403. doi:10.1023/A:1011103219851

    Article  Google Scholar 

  • Petersen K, Lerche I (1995) Quantification of thermal anomalies in sediments around salt structures. Geothermics 24:253–268. doi:10.1016/0375-6505(94)00051-D

    Article  Google Scholar 

  • Prasad A, Simmons C (2005) Using quantitative indicators to evaluate results from variable-density groundwater flow models. Hydrogeol J 13:905–914. doi:10.1007/s10040-004-0338-0

    Article  Google Scholar 

  • Pruess K (1991) TOUGH2—a general purpose numerical simulator for multiphase fluid and heat flow. Lawrence Berkeley Laboratory Report LBL 29400

  • Przybycin (2011) Sensitivity on mesh dependence for 3D coupled fluid- and heat-transport simulations—an example from the North East German Basin. Master thesis, Freie Universität Berlin

  • Raffensperger JP, Vlassopoulos D (1999) The potential for free and mixed convection in sedimentary basins. Hydrogeol J 7:505–520. doi:10.1007/s100400050224

    Article  Google Scholar 

  • Rühaak W, Rath V, Clauser C (2010) Detecting thermal anomalies within the Molasse Basin, southern Germany. Hydrogeol J 18:1897–1915. doi:10.1007/s10040-010-0676-z

    Article  Google Scholar 

  • Scheck M (1997) Dreidimensionale Strukturmodellierung des Nordostdeutschen Beckens unter Einbeziehung von Krustenmodellen. Dissertation Sci Tech Rep STR97/10, German Research Center for Geoscience, Potsdam

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169. doi:10.1016/S0040-1951(99)00194-8

    Article  Google Scholar 

  • Schincariol RA, Schwartz FW, Mendoza CA (1994) On the generation of instabilities in variable density flow. Water Resour Res 30:913–927. doi:10.1029/93WR02951

    Article  Google Scholar 

  • Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Computat Geom 22:21–74. doi:10.1016/S09257721(01)00047-5

    Article  Google Scholar 

  • Simmons CT (2005) Variable density groundwater flow: from current challenges to future possibilities. Hydrogeol J 13:116–119. doi:10.1007/s10040-004-0408-3

    Article  Google Scholar 

  • Simmons CT, Fenstemaker TR, Sharp JM Jr (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275. doi:10.1016/S0169-7722(01)00160-7

    Article  Google Scholar 

  • Stüben K (2007) Solving reservoir simulation equations. In: 9th international forum on reservoir simulation. Abu Dhabi, United Arab Emirates

  • Voss CI, Souza WR (1987) Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour Res 23:1851–1866. doi:10.1029/WR023i010p01851

  • Yang J, Feng Z, Luo X, Chen Y (2010a) Three-dimensional numerical modeling of salinity variations in driving basin-scale ore-forming fluid flow: example from Mount Isa Basin, northern Australia. J Geochem Expl 106:236–243. doi:10.1016/j.gexplo.2009.12.004

    Article  Google Scholar 

  • Yang J, Feng Z, Luo X, Chen Y (2010b) Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow. Sci China Earth Sci 53:64–71. doi:10.1007/s11430-009-0185-x

    Article  Google Scholar 

  • Ziegler PA (1990) Geological atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V., New York, pp 1–239

Download references

Acknowledgments

This work has been funded by the German Federal Ministry of Education and Research in the program “Spitzenforschung in den neuen Ländern” (BMBF Grant 03G0767A/B/C). The authors wish to thank the anonymous reviewer for useful and constructive comments that helped to improve the quality of the manuscript. Computational results have been visualized using the open-source post-processing and rendering engines of the visualization applications ParaView and GnuPlot. The authors wish to thank all people who contributed to these powerful tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Onno Kaiser.

Appendix

Appendix

The finite element method-based simulator FEFLOW® (Diersch 2009a) was used to solve the following set of governing equations:

$$\frac{\partial h}{\partial t} + \nabla \cdot \left( {{\mathbf{q}}^{f} } \right) = 0 $$
(1)
$${\mathbf{q}}^{f} = {\mathbf{q}}_{\text{linear}}^{f} + {\mathbf{q}}_{\text{non - linear}}^{f} = - {\mathbf{K}}\nabla h - {\mathbf{K}}\frac{{\rho^{f} \left( {p,T} \right) - \rho_{0}^{f} }}{{\rho_{0}^{f} }}\frac{{\mathbf{g}}}{{\left| {\mathbf{g}} \right|}} $$
(2)
$$\left\{ {\phi \left( {\rho_{0}^{f} c^{f} } \right) + \left( {1 - \phi } \right)\rho^{s} c^{s} } \right\}\frac{\partial T}{\partial t} + \rho_{0}^{f} c^{f} \left\{ {\nabla \cdot \left( {{\mathbf{q}}_{\text{linear}}^{f} T} \right) + \nabla \cdot \left( {{\mathbf{q}}_{\text{non - linear}}^{f} T} \right)} \right\} - \nabla \cdot \left( {{\mathbf{q}}^{T} } \right) = Q_{T} $$
(3)

Equation (1) represents the continuity equation of fluid mass conservation with \(h\) being the hydraulic head (m), \({\mathbf{q}}^{f}\) (ms−1) the specific discharge (Darcy’s velocity). Darcy’s law is given by Eq. (2). It may be split into two terms, a linear (advective) and a non-linear (thermal convective) flow component. The linear component expresses the contribution to the fluid velocity as coming from changes in groundwater head. The non-linear part takes into account the additional contribution of the fluid-density \(\rho^{f} \left( {T,p} \right)\) (kg m−3) with respect to its reference state \(\rho_{0}^{f}\) (kg m−3) along the unit vector of gravity \({\mathbf{g}}/\left| {\mathbf{g}} \right|\). The fluid-density in the non-linear buoyancy terms in the Darcy equation (2) is calculated by an Equation of State (Magri et al. 2005, 2009); Magri 2009:

$$\rho^{f} (T,p) = \rho_{0}^{f} (1 + \gamma (T,p)\Updelta p - \beta (T,p)\Updelta T), $$
(4)

where \(\gamma\) (Pa−1) and \(\beta\) (K−1) are the coefficients for fluid compressibility and thermal expansion accounting for temperature and pressure effects on the fluid-density \(\rho_{0}^{f}\) at reference condition T 0 = 20 °C.

\({\mathbf{K}} = \frac{{{\mathbf{k}}\rho_{0}^{f} g}}{{\mu^{f} }}\) is the hydraulic conductivity tensor of the porous media consisting of the permeability k (m2), gravity acceleration \(g\) (ms−2) and temperature-dependent viscosity \(\mu^{f} (T^{f} )\) (Pas). Under thermal equilibrium between the fluid and the solid, i.e. \(T^{f} = T^{s} \equiv T\), and within the frame provided by the Oberbeck–Boussinesq approximation (Holzbecher 1998; Kolditz et al. 1998; Nield and Bejan 2006), Eq. (3) denotes the heat transport equation where \(\phi \left( {\rho_{0}^{f} c^{f} } \right)\) [kJ/(kg K)] and \(\left( {1 - \phi } \right)\rho^{s} c^{s}\) [kJ/(kg K)] are the specific heat capacity of the fluid and the solid phase, respectively, \(\phi\) (–) stands for the effective porosity, T (K) the temperature, \(Q_{T}\) (μW/m) the radiogenic heat production. The last term of the left hand side of Eq. 3 expresses the contribution to the internal thermal budget from the conductive (Fourier’s law) and the thermodispersive processes as:

$${\mathbf{q}}^{T} = - {\varvec{\lambda}} \cdot \nabla T, $$
(5)

where \({\varvec{\lambda}} = {\varvec{\lambda}}_{\text{DISP}} + {\varvec{\lambda}}_{\text{COND}}\) [W/(mK)] is the thermal conductivity of the saturated porous medium involving dispersive \({\varvec{\lambda}}_{\text{DISP}}\) [W/(mK)] and conductive \({\varvec{\lambda}}_{\text{COND}} = \phi {\varvec{\lambda}}^{f} + (1 - \phi ){\varvec{\lambda}}^{s}\) effects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, B.O., Cacace, M. & Scheck-Wenderoth, M. 3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization: different sensitivities for different mechanisms of heat transport. Environ Earth Sci 70, 3643–3659 (2013). https://doi.org/10.1007/s12665-013-2249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2249-7

Keywords

Navigation