Skip to main content

Advertisement

Log in

Bone mineralization in children with Wilson’s disease

  • Original Article
  • Published:
Indian Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The goal of this study was to determine bone mineralization in children with Wilson’s disease (WD).

Methods

Twenty-seven patients (16 males) and two age- and gender-matched healthy children for each patient were enrolled in the study. Bone mineral content (BMC, grams) and density (BMD, g/cm2) at lumbar 1–4 vertebrae were measured by dual-energy X-ray absorptiometry. Urinary calcium excretion was calculated in 19 patients. The effect of cirrhosis and hypercalciuria on BMC and BMD was also evaluated in WD patients.

Results

There was no statistically significant difference between patients and healthy controls regarding mean BMC (33.0 ± 13.9 vs. 35.8 ± 13.8 g) (p = 0.940) and mean BMD values (0.66 ± 0.16 vs. 0.71 ± 0.18 g/cm2) (p = 0.269), respectively. Nine (47.4 %) patients had hypercalciuria. Hypercalciuric patients had statistically significant lower BMC and BMD values than those without hypercalciuria. A significant difference continued to be present after age, weight, height, and pubertal stage adjustment was done, but disappeared after weight, height, follow up duration, and pubertal stage adjustment was done. The presence of cirrhosis did not affect BMC and BMD significantly in WD patients.

Conclusions

BMC and BMD in children with WD were normal. The presence of hypercalciuria but not cirrhosis may affect BMC and BMD negatively in the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bull PC, Thomas GR, Rommens JM, et al. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5:327–37.

    Article  PubMed  CAS  Google Scholar 

  2. Tanzi RE, Petrukhin K, Chernov I, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993;5:344–50.

    Article  PubMed  CAS  Google Scholar 

  3. Petrukhin K, Fischer SG, Pirastu M, et al. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet. 1993;5:338–43.

    Article  PubMed  CAS  Google Scholar 

  4. Yüce A, Koçak N, Demir H, et al. Evaluation of diagnostic parameters of Wilson’s disease in childhood. Indian J Gastroenterol. 2003;22:4–6.

    PubMed  Google Scholar 

  5. Yüce A, Koçak N, Demirtaş M, et al. DNA haplotype analysis for the diagnosis of Wilson disease in siblings. Acta Paediatr. 2000;89:1142–4.

    Article  PubMed  Google Scholar 

  6. Lopez-Larramona G, Lucendo A, Gonzalez-Castillo S, Tenias JM. Hepatic osteodystrophy: an important matter for consideration in chronic liver disease. World J Hepatol. 2011;3:300–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yadav A, Carey EJ. Osteoporosis in chronic liver disease. Nutr Clin Pract. 2013;28:52–64.

    Article  PubMed  Google Scholar 

  8. Uslu N, Saltık-Temizel IN, Demir H, et al. Bone mineral density in children with cirrhosis. J Gastroenterol. 2006;41:873–7.

    Article  PubMed  Google Scholar 

  9. Rodriguez Nieva N, Febrer Rotger A, Melendez Plumed M, Vernet Bori A. Osteoarthropathy in three siblings with Wilson’s disease. An Pediatr (Barc). 2004;61:181–4.

    Article  CAS  Google Scholar 

  10. Golding DN, Walshe JM. Proceedings: The musculoskeletal features of Wilson’s disease: a clinical, radiological, and serological survey. Ann Rheum Dis. 1975;34:201.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Hegedus D, Ferencz V, Lakatos PL, et al. Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J Bone Miner Res. 2002;17:1961–7.

    Article  PubMed  CAS  Google Scholar 

  12. Xie YZ, Zhang XZ, Xu XH, et al. Radiologic study of 42 cases of Wilson disease. Skelet Radiol. 1985;13:114–9.

    Article  CAS  Google Scholar 

  13. Selimoglu MA, Ertekin V, Doneray H, Yildirim M. Bone mineral density of children with Wilson disease: efficacy of penicllamine and zinc therapy. J Clin Gastroenterol. 2008;42:194–8.

    Article  PubMed  CAS  Google Scholar 

  14. Alon U, Hellerstein S. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr Nephrol. 1994;8:250–1.

    Article  PubMed  CAS  Google Scholar 

  15. Hayran M, Özdemir O. Bilgisayar, İstatistik ve Tıp (Statistics and Medicine). Ankara-Turkey: Hekimler Yayın Birliği; 1995.

  16. Rouillard S, Lane NE. Hepatic osteodystrophy. Hepatology. 2001;33:301–7.

    Article  PubMed  CAS  Google Scholar 

  17. Atkinson M, Nordin BE, Sherlock S. Malabsorption and bone disease in prolonged obstructive jaundice. Q J Med. 1956;25:299–312.

    PubMed  CAS  Google Scholar 

  18. Argao EA, Specker BL, Heubi JE. Bone mineral content in infants and children with chronic cholestatic liver disease. Pediatrics. 1993;91:1151–4.

    PubMed  CAS  Google Scholar 

  19. Kobayashi A, Kawai S, Utsunomiya T, et al. Bone disease in infants and children with hepatobiliary disease. Arch Dis Child. 1974;49:641–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Glasgow JF, Thomas PS. The osteodystrophy of prolonged obstructive liver disease in childhood. Acta Paediatr Scand. 1976;65:57–64.

    Article  PubMed  CAS  Google Scholar 

  21. Sokhi RP, Anantharaju A, Kondaveeti R, et al. Bone mineral density among cirrhotic patients awaiting liver transplantation. Liver Transpl. 2004;10:648–53.

    Article  PubMed  Google Scholar 

  22. Finby N, Bearn AG. Roentgenographic abnormalities of the skeletal system in Wilson’s disease (hepatolenticular degeneration). Am J Roentgenol Radium Ther Nucl Med. 1958;79:603–11.

    PubMed  CAS  Google Scholar 

  23. Rosenoer VM, Michell RC. Skeletal changes in Wilson’s disease (hepatolenticular degeneration). Br J Radiol. 1959;32:805–9.

    Article  PubMed  CAS  Google Scholar 

  24. Mindelzun R, Elkin M, Scheinberg IH, Sternlieb I. Skeletal changes in Wilson’s disease: a radiological study. Radiology. 1970;94:127–32.

    Article  PubMed  CAS  Google Scholar 

  25. Aksoy M, Camli N, Dincol K, et al. Osseous changes in Wilson’s disease: a radiologic study of nine patients. Radiology. 1972;102:505–9.

    Article  PubMed  CAS  Google Scholar 

  26. Blake GM, Fogelman I. Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med. 1997;27:210–28.

    Article  PubMed  CAS  Google Scholar 

  27. Voruganti VS, Klein GL, Lu HX, et al. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns. 2005;31:711–6.

    Article  PubMed  Google Scholar 

  28. Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem. 2010;338:241–54.

    Article  PubMed  CAS  Google Scholar 

  29. Strause L, Saltman P, Smith KT, et al. Spinal bone loss in postmenopousal women supplemented with calcium and trace minerals. J Nutr. 1994;124:1060–4.

    PubMed  CAS  Google Scholar 

  30. Flynn A. The role of dietary calcium in bone health. Proc Nutr Soc. 2003;62:851–8.

    Article  PubMed  CAS  Google Scholar 

  31. Smith BJ, King JB, Lucas EA, et al. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr. 2002;132:190–6.

    PubMed  CAS  Google Scholar 

  32. Jonas J, Burns J, Abel EW, et al. Impaired mechanical strength of bone in experimental copper deficiency. Ann Nutr Metab. 1993;37:245–52.

    Article  PubMed  CAS  Google Scholar 

  33. Rucker RB, Riggins RS, Laughlin R, et al. Effects of nutritional copper deficiency on the biomechanical properties of bone and arterial elastin metabolism in the chick. J Nutr. 1975;105:1062–70.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

AC, HÖ, AY, İNS-T, HD, and FG have no conflict of interest to report.

Source of support

None

Ethics statement

The study was performed in a manner that conforms with the Helsinki Declaration of 1975, as revised in 2000 and 2008 concerning Human and Animal Rights, and the authors followed the policy concerning Informed Consent as shown on Springer.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Özen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetinkaya, A., Özen, H., Yüce, A. et al. Bone mineralization in children with Wilson’s disease. Indian J Gastroenterol 33, 427–431 (2014). https://doi.org/10.1007/s12664-014-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12664-014-0468-9

Keywords

Navigation