Skip to main content
Log in

Dopaminerge Modulation striataler Plastizität

Türöffnerfunktion in der Automatisierung von Willkürbewegungen

Dopaminergic modulation of striatal plasticity

Gateway to movement automatization

  • Hauptbeiträge
  • Published:
Sportwissenschaft Aims and scope Submit manuscript

Zusammenfassung

Der vorliegende Beitrag versucht, einen Überblick über die Neurobiologie der Automatisierung von Willkürbewegungen zu geben. Insbesondere wird aufgezeigt, dass eine zunehmende Bewegungsautomatisierung mit synaptischen Plastizitätsvorgängen im kortikokortikalen und kortikostriatalen System einhergeht, die vermutlich zu Veränderungen in den neuronalen Repräsentationen der geübten Bewegungen führen. Sodann wird die Rolle phasischer Dopaminaktivierungen und deren modulatorischer Effekt auf striatale Plastizitätsvorgänge bei denjenigen neuronalen Phänomenen diskutiert, die mit fortschreitendem Training beobachtet werden.

Abstract

This article attempts to outline the neuronal foundations of movement automatization. In particular, it is shown that an increase in automaticity corresponds to processes of synaptic plasticity in the corticostriatal and corticocortical system. This mechanism is supposed to induce changes in the neuronal representations of the respective skill. Furthermore, the role of phasic dopamine release will be discussed with respect to its modulating effect on processes of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abler, B., Hahlbrock, R., Unrath, A., Grön, G. & Kassubek, J. (2009). At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists. Brain, 132, 2396–2402.

    Google Scholar 

  2. Abler, B., Walter, H., Erk, S., Kammerer, H. & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage, 31, 790–795.

    Google Scholar 

  3. Albin, R.L., Young, A.B. & Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12, 366–375.

    Google Scholar 

  4. Bayer, H.M. & Glimcher, P.W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141.

    Google Scholar 

  5. Beck, F. (2008). Sportmotorik und Gehirn. Sportwissenschaft, 38 (4), 423–450.

  6. Beck, F. & Beckmann, J. (2009). Werden sportmotorisch relevante Handlungs-Effekt-Verknüpfungen über dopaminerge Neuromodulation vermittelt? Deutsche Zeitschrift für Sportmedizin, 2, 36–40.

    Google Scholar 

  7. Beck, F. & Beckmann, J. (2010a). Die Bedeutung striataler Plastizitätsvorgänge und unerwarteten Bewegungserfolgs für sportmotorisches Lernen. Sportwissenschaft, 40 (1), 19–25.

  8. Beck, F. & Beckmann, J. (2010b). Die Rolle hippokampaler und striataler Plastizitätsvorgänge für motorisches Lernen. Deutsche Zeitschrift für Sportmedizin. 61 (7–8), 157–162.

    Google Scholar 

  9. Belin, D. & Everitt, B.J. (2008). Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron, 57, 432–441.

    Google Scholar 

  10. Berns, G.S., McClure, S.M., Pagnoni, G. & Montague, P.R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798.

    Google Scholar 

  11. Berridge, K.C. (2007). The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl), 191 (3), 391–431.

    Google Scholar 

  12. Bi, G.O. & Poo, M.M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–166.

    Google Scholar 

  13. Blischke, K. (2001). Automatisierung einer großmotorischen Kalibrierungsaufgabe durch Prozeduralisierung. psychologie und sport, 8, 19–38.

  14. Blischke, K. (2002). Automatisierung und Langzeit-Behalten motorischer Fertigkeiten. psychologie und sport, 9 (3), 97–109.

  15. Blischke, K. (2010). Motorik, Diagnostik und Intervention bei Morbus Parkinson. In N. Schott & J. Munzert (Hrsg.), Motorische Entwicklung (S. 207–229). [Reihe Sportpsychologie, Hrsg. von B. Strauß, W. Schlicht, J. Munzert & R. Fuchs] Göttingen, Bern, Wien, Paris u. a.: Hogrefe.

  16. Bliss, T.V.P. & Collingridge, G.L. (1993). A synaptic model of memory: Long term potentiation in the hippocampus. Nature, 361, 31–39.

    Google Scholar 

  17. Bolam, J.P., Hanley, J.J., Booth, P.A. & Bevan, M.D. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196, 527–542.

    Google Scholar 

  18. Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619–639.

    Google Scholar 

  19. Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A. & Rosen, B.R. (2002). Dorsal anterior congulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Science of the USA, 99, 523–528.

    Google Scholar 

  20. Charron, S. & Koechlin, E. (2010). Divided representation of concurrent goals in the human frontal lobes. Science, 328, 360–363.

    Google Scholar 

  21. Cohen, M.X. & Frank, M.J. (2009). Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 199, 141–156.

    Google Scholar 

  22. Coynel, D., Marrelec, G., Perlbarg, V., Pélégrini-Issac, M., Van de Moortele, P.-F., Ugurbil, K., Doyon, J., Benali, H. & Lehéricy, S. (2010). Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49 (1), 759–766.

    Google Scholar 

  23. Dan, Y. & Poo, M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron, 44, 22–30.

    Google Scholar 

  24. Darvas, M. & Palmiter, R.D. (2010). Restricting dopaminergic signalling to either dorsolateral or medial striatum facilitates cognition. Journal of Neuroscience, 30, 1158–1165.

    Google Scholar 

  25. DeLong, M.R. (2000). The Basal Ganglia. In E.R. Kandel, J.H. Schwartz & T.M. Jessel (Eds.), Principles of neural science. 4th edition (pp. 853–867). New York: McGraw-Hill.

    Google Scholar 

  26. Domenger, D. & Schwarting, R.K.W. (2008). Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neuroscience Letters, 444, 212–216.

    Google Scholar 

  27. Doyon, J., Penhune, V. & Ungerleider, L.G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar system to motor skill learning. Neuropsychologia, 41, 252–262.

    Google Scholar 

  28. Doyon, J. & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167.

    Google Scholar 

  29. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioral Brain Research, 199, 61–75.

  30. Draganski, B., Kherif, F., Klöppel, S., Cook, P.A., Alexander, D.C., Parker, G.J.M., Deichmann, R., Ashburner, J. & Frackowiak, R.S.J. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28, 7143–7152.

    Google Scholar 

  31. Drechsler, R. (2007). Exekutive Funktionen – Übersicht und Taxonomie. Zeitschrift für Neuropsychologie, 18, 233–248.

  32. Dux, P.E., Ivanoff, J., Asplund, C.L. & Marois, R. (2006). Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron, 52, 1109–1120.

    Google Scholar 

  33. Eyny, Y.S. & Horvitz, J.C. (2003). Opposing roles of D1 and D2 receptors in appetitive conditioning. Journal of neuroscience, 23, 1584–1587.

    Google Scholar 

  34. Fauvre, A., Haberland, U., Condé, F. & El Massioui, N. (2005). Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. Journal of Neuroscience, 25, 2771–2780.

    Google Scholar 

  35. Feldman, D.E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.

    Google Scholar 

  36. Flöel, A., Breitenstein, C., Hummel, F., Celnik, P., Gingert, C., Sawaki, L., Knecht, S. & Cohen, L.G. (2005). Dopaminergic influences on formation of a motor memory. Annals of Neurology, 58, 121–130.

    Google Scholar 

  37. Floyer-Lea, A. & Matthews, P.M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94, 512–518.

    Google Scholar 

  38. Garraux, G., Peigneux, P., Carson, R.E. & Hallett, M. (2007). Task-related interaction between basal ganglia and cortical dopamine release. Journal of Neuroscience, 27, 14434–14441.

    Google Scholar 

  39. Gonon, F. (1997). Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. Journal of Neuroscience, 17, 5972–5978.

    Google Scholar 

  40. Grafton, S.T., Hazeltine, E. & Ivry, R.B. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510.

    Google Scholar 

  41. Graybiel, A. (1995). The basal ganglia. Trends in Neuroscience, 18, 60–62.

    Google Scholar 

  42. Grefen, C.R. (2010). Functional neuroanatomy of dopamine in the striatum. In L.L. Iversen, S.D.Iversen, S.B. Dunnett & A. Björklund (Eds.), Dopamine Handbook (pp. 11–21). New York: Oxford University Press.

    Google Scholar 

  43. Haber, S. (2010). Convergence of limbic, cognitive, and motor cortico-striatal circuits with dopamine pathways in the primate brain. In L.L. Iversen, S.D. Iversen, S. B. Dunnett & A. Björklund (Eds.), Dopamine Handbook (pp. 38–48). New York: Oxford University Press.

    Google Scholar 

  44. Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., Imamizu, H. & Kawato, M. (2004). A neural correlate of reward-based behavioural learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24, 1660–1665.

    Google Scholar 

  45. Haruno, M. & Kawato, M. (2006). Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning. Neural Network, 19, 1242–1254.

    Google Scholar 

  46. Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews, 56, 27–78.

    Google Scholar 

  47. Izhikevich, E.M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signalling. Cerebral Cortex, 17, 2443–2452.

    Google Scholar 

  48. Jacob, V., Brasier, D.J., Erchova, I., Feldman, D. & Shulz, D. E. (2007). Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. Journal of Neuroscience, 27, 1271–1284.

    Google Scholar 

  49. Jueptner, M., Frith, C.D., Brooks, D.J., Frackowiak, R.S. & Passingham, R.E. (1997a). Anatomy of motor learning. II. Subcortical structures and learning by trail and error. Journal of Neurophysiology, 77, 1325–1337.

    Google Scholar 

  50. Jueptner, M., Stephan, K.M., Frith, C.D., Brooks, D.J., Frackowiak, R.S. & Passingham, R.E. (1997b). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology, 77, 1313–1324.

    Google Scholar 

  51. Keele, S.W., Ivry, R., Mayr, U., Hazeltine, E. & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110 (2), 316–339.

    Google Scholar 

  52. Kelley, A.E. (2004). Ventral striatal control of appetitive motivation: role in ingestive behaviour and reward-related learning. Neuroscience Biobehavior Reviews, 27, 765–776.

    Google Scholar 

  53. Krakauer, J.W., Ghilardi, M.F. & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature neuroscience, 2 (11), 1026–1031.

    Google Scholar 

  54. Lehéricy, S., Benali, H., Van de Moortele, P.-F., Pélégrini-Issac, M., Waechter, T., Ugurbil, K. & Doyon, J. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Science of the United States of America, 102, 12566–12571.

    Google Scholar 

  55. Levy, J., Pashler, H. & Boer, E. (2006). Central interference in driving – Is there any stopping the Psychological Refractory Period? Psychological Science, 17, 228–235.

    Google Scholar 

  56. Lisman, J.E. & Grace, A.A. (2005). The hippocampal-ATV loop: controlling the entry of information into long-term memory. Neuron, 46, 703–713.

    Google Scholar 

  57. Maquestiaux, F., Lague-Beauvais, M., Ruthruff, E. & Bherer, L. (2008). Bypassing the central bottleneck after single-task practice in the psychological refractory period paradigm: Evidence for task automatization and greedy resource recruitment. Memory & Cognition, 36 (7), 1262–1282

    Google Scholar 

  58. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. (1997). Regulation of synaptic between efficacy by coincidence of postsynaptic Aps and EPSPs. Science, 275, 213–215.

  59. McClure, S.M., Berns, Montague, P.R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–346.

  60. Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 10, 317–356.

    Google Scholar 

  61. Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A. & Wager, T.D. (2000). Cognitive Psychology, 41, 49–100.

    Google Scholar 

  62. Müller, H. & Blischke, K. (2009). Motorisches Lernen. In B. Strauß & W. Schlicht (Hrsg.), Grundlagen der Sportpsychologie (S. 159–228). Göttingen, Bern, Toronto, Seattle: Hogrefe.

  63. O’Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329–337.

    Google Scholar 

  64. Palminteri, S., Lebreton, M., Worbe, Y., Grabli, D., Hartmann, A. & Pessiglione, M. (2009). Pharmacological modulation of subliminal learning in Parkinson’s and Tourette’s syndromes. Proceedings of the National Academy of Science of the United States of America, 106, 19179–19184.

    Google Scholar 

  65. Pashler, H. & Johnston, J.C. (1998). Attentional limitations in dual-task performance. In H. Pashler (Ed.), Attention (pp. 155–189). Hove, UK: Psychology Press.

  66. Pawlak, V. & Kerr, J.N.D. (2008). Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. Journal of Neuroscience, 28, 2435–2446.

    Google Scholar 

  67. Pessiglione, M, Seymour, B., Flandin, G. Dolan, R.J. & Frith, C.D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442, 1042–1045.

    Google Scholar 

  68. Poldrack, R.A., Sabb, F.W., Foerde, K., Tom, S.M., Asarnow, R.F., Bookheimer, S.Y. & Knowlton, B.J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364.

    Google Scholar 

  69. Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive Psychology. Neuroscience, 139, 5–21.

    Google Scholar 

  70. Robinson, T.E. & Berridge, K.C. (1993). The neural basis of drug craving. An incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247–291.

    Google Scholar 

  71. Roth, G. (2001). Fühlen, Denken, Handeln – wie das Gehirn unser Verhalten steuert. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  72. Schonberg, T., Daw, N.D., Joel, D. & O’Doherty, J.P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27, 12860–12867.

    Google Scholar 

  73. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207.

    Google Scholar 

  74. Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.

    Google Scholar 

  75. Shaw, C. & McEachern, J. (2001). Toward a theory of neuroplasticity. Hove: Psychology Press.

  76. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848–851.

    Google Scholar 

  77. Soechting, J. F. & Terzuolo, C. A. (1990). Sensorimotor transformations and the kinematics of arm movements in three-dimensional space. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 479–494). Hillsdale, NJ: Erlbaum.

  78. Tricomi, E., Balleine, B.W. & O’Doherty, J.P. (2009). A specific role of posterior dorsolateral striatum in human habit learning. Cognitive Neuroscience, 29, 2225–2232.

    Google Scholar 

  79. Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., Lecea, L. & Deisseroth, K. (2009). Phasic firning in dopaminergic neurons is sufficient for behavioural conditioning. Science, 324, 1080–1084.

    Google Scholar 

  80. Valentin, V.V. & O’Doherty, J.P. (2009). Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. Journal of Neurophysiology, 102, 3384–3391.

    Google Scholar 

  81. Verwey, W.B. (1994). Mechanisms in skilled motor behavior. Hilversum: Van der Weij.

  82. Williams, S.M. & Goldman-Rakic, P.S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cerebral Cortex, 8, 321–45.

    Google Scholar 

  83. Willuhn, I. & Steiner, H. (2008). Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience, 153, 249–258.

    Google Scholar 

  84. Wu, T., Kansaku, K. & Hallett, M. (2004). How self-initiated memorized movements become automatic: a fMRT study. Journal of Neurophysiology, 91, 1690–1698.

    Google Scholar 

  85. Zweifel, L.S., Parker, J.G., Lobb, C.J., Rainwater, A., Wall, V.Z., Fadok, V.Z., Darvas, M., Kim, M.J., Mizumori, Paladini, C.A., Phillips, P.E.M. & Palmiter, R.D. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behaviour. Proceedings of the National Academy of Science of the United States of America, 106, 7281–7288.

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, F., Blischke, K. & Abler, B. Dopaminerge Modulation striataler Plastizität. Sportwiss 42, 271–279 (2012). https://doi.org/10.1007/s12662-012-0230-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12662-012-0230-3

Schlüsselwörter

Keywords

Navigation