Skip to main content

Advertisement

Log in

A hybrid model using teaching–learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Feature selection is the most important step in the design of a breast cancer diagnosis system. The basic objective of the proposed methodology is to reduce the size of the feature space to improve the performance of the classification system. In this article, a hybrid teaching–learning based optimization (TLBO) with a Salp swarm algorithm (SSA) is presented to select the features with an artificial neural network as a fitness evaluator. The features selected by TLBO-SSA are evaluated using an adaptive neuro-fuzzy inference system. The performance of the proposed methodology is tested over 651 mammograms. The experimental results show that TLBO-SSA appears to be the best when compared with the basic TLBO algorithm. TLBO-SSA archived an accuracy of 98.46% with 98.81% sensitivity, 98.08% specificity, 0.9852 F-score, 0.9692 Cohen’s kappa coefficient, and area under curve AZ = 0.997 ± 0.001. Again the robustness of the proposed TLBO-SSA method is tested using a benchmark dataset obtained from the UCI repository. The result obtained by TLBO-SSA is compared with the Genetic Algorithm. The results show that TLBO-SSA is better than the Genetic Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manag 179:362–372

    Article  Google Scholar 

  • Abu-Amara F, Abdel-Qader I (2009) Hybrid mammogram classification using rough set and fuzzy classifier. Int J Biomed Imaging

  • Acharya N, Singh S (2018) An IWD-based feature selection method for intrusion detection system. Soft Comput 22(13):4407–4416

    Article  Google Scholar 

  • Aljarah I, Ala’M AZ, Faris H, Hassonah MA, Mirjalili S, Saadeh H (2018) Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput 10(3):478–495

    Article  Google Scholar 

  • Bowyer K, Kopans D, Kegelmeyer WP, Moore R, Sallam M, Chang K, Woods K (1996) The digital database for screening mammography. In: Third international workshop on digital mammography 58:27

  • Chen D, Zou F, Wang J, Yuan W (2016) SAMCCTLBO: a multi-class cooperative teaching–learning-based optimization algorithm with simulated annealing. Soft Comput 20(5):1921–1943

    Article  Google Scholar 

  • Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recogn 39(4):646–668

    Article  Google Scholar 

  • Das SP, Padhy S (2018) A novel hybrid model using teaching–learning-based optimization and a support vector machine for commodity futures index forecasting. Int J Mach Learn Cybern 9(1):97–111

    Article  Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, pp 39–43

  • Eesa AS, Orman Z, Brifcani AMA (2015) A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Syst Appl 42(5):2670–2679

    Article  Google Scholar 

  • Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381

    Article  Google Scholar 

  • Faris H, Mafarja MM, Heidari AA, Aljarah I, Alam AZ, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67

    Article  Google Scholar 

  • Faris H, Heidari AA, Alam AZ, Mafarja M, Aljarah I, Eshtay M, Mirjalili S (2020) Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst Appl 140:112898

    Article  Google Scholar 

  • Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng KH (2012) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77–98

    Article  Google Scholar 

  • Gu S, Cheng R, Jin Y (2018) Feature selection for high-dimensional classification using a competitive swarm optimizer. Soft Comput 22(3):811–822

    Article  Google Scholar 

  • Hancer E, Xue B, Zhang M (2018) Differential evolution for filter feature selection based on information theory and feature ranking. Knowl-Based Syst 140:103–119

    Article  Google Scholar 

  • Heath M, Bowyer K, Kopans D, Kegelmeyer P, Moore R, Chang K, Munishkumaran S (1998) Current status of the digital database for screening mammography. Digital mammography. Springer, Dordrecht, pp 457–460

    Chapter  Google Scholar 

  • Hegazy AE, Makhlouf MA, El-Tawel GS (2019) Feature selection using chaotic salp swarm algorithm for data classification. Arab J Sci Eng 44(4):3801–3816

    Article  Google Scholar 

  • Henschke N, Everett JD, Richardson AJ, Suthers IM (2016) Rethinking the role of salps in the ocean. Trends Ecol Evol 31(9):720–733

    Article  Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Book  Google Scholar 

  • Huang ML, Hung YH, Lee WM, Li RK, Wang TH (2012) Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis. J Med Syst 36(2):407–414

    Article  Google Scholar 

  • Ibrahim A, Ahmed A, Hussein S, Hassanien AE (2018) Fish image segmentation using salp swarm algorithm. In: International Conference on Advanced Machine Learning Technologies and Applications, Springer, Cham, pp 42–51

  • Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jang JS, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  • Kuo RJ, Huang SL, Zulvia FE, Liao TW (2018) Artificial bee colony-based support vector machines with feature selection and parameter optimization for rule extraction. Knowl Inf Syst 55(1):253–274

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 159–174

  • Li H, Wang Y, Liu KR, Lo SC, Freedman MT (2001) Computerized radiographic mass detection. II. Decision support by featured database visualization and modular neural networks. IEEE Trans Med Imaging 20(4):302–313

    Article  Google Scholar 

  • Li Y, Li T, Liu H (2017) Recent advances in feature selection and its applications. Knowl Inf Syst 53(3):551–577

    Article  Google Scholar 

  • Liu H, Motoda H (2012) Feature selection for knowledge discovery and data mining. Springer Science & Business Media, Berlin, p 454

    Google Scholar 

  • Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4):491–502

    Article  MathSciNet  Google Scholar 

  • Mafarja M, Aljarah I, Faris H, Hammouri AI, Ala’M, A. Z., & Mirjalili, S. (2019) Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl 117:267–286

    Article  Google Scholar 

  • Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. Nature-ınspired optimizers. Springer, Cham, pp 47–67

    Google Scholar 

  • Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S (2020) Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput 12(1):150–175

    Article  Google Scholar 

  • Majid AS, de Paredes ES, Doherty RD, Sharma NR, Salvador X (2003) Missed breast carcinoma: pitfalls and pearls. Radiographics 23(4):881–895

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  • Mohanty AK, Senapati MR, Lenka SK (2013) RETRACTED ARTICLE: An improved data mining technique for classification and detection of breast cancer from mammograms. Neural Comput Appl 22(1):303–310

    Article  Google Scholar 

  • Qu X, Zhang R, Liu B, Li H (2017) An improved TLBO based memetic algorithm for aerodynamic shape optimization. Eng Appl Artif Intell 57:1–15

    Article  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rodrigues D, Pereira LA, Nakamura RY, Costa KA, Yang XS, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst Appl 41(5):2250–2258

    Article  Google Scholar 

  • Sameti M, Ward RK, Morgan-Parkes J, Palcic B (1997) A method for detection of malignant masses in digitized mammograms using a fuzzy segmentation algorithm. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.'Magnificent Milestones and Emerging Opportunities in Medical Engineering'(Cat. No. 97CH36136). IEEE 2, pp 513–516

  • Saritas I, Ozkan IA, Sert IU (2010) Prognosis of prostate cancer by artificial neural networks. Expert Syst Appl 37(9):6646–6650

    Article  Google Scholar 

  • Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481

    Article  Google Scholar 

  • Sayed GI, Hassanien AE, Azar AT (2019) Feature selection via a novel chaotic crow search algorithm. Neural Comput Appl 31(1):171–188

    Article  Google Scholar 

  • Shao W, Pi D, Shao Z (2016) A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling. Knowl-Based Syst 107:219–234

    Article  Google Scholar 

  • Shao W, Pi D, Shao Z (2018) A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling problem with total tardiness criterion. Comput Oper Res 94:89–105

    Article  MathSciNet  MATH  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Taghanaki SA, Kawahara J, Miles B, Hamarneh G (2017) Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification. Comput Methods Programs Biomed 145:85–93

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  • Taradeh M, Mafarja M, Heidari AA, Faris H, Aljarah I, Mirjalili S, Fujita H (2019) An evolutionary gravitational search-based feature selection. Inf Sci 497:219–239

    Article  Google Scholar 

  • Thawkar S, Ingolikar R (2018a) Classification of masses in digital mammograms using biogeography-based optimization technique. J King Saud Univ-Comput Inform Sci. https://doi.org/10.1016/j.jksuci.2018.01.004

    Article  Google Scholar 

  • Thawkar S, Ingolikar R (2018b) Classification of masses in digital mammograms using the genetic ensemble method. J Intell Syst. https://doi.org/10.1515/jisys-2018-0091

    Article  Google Scholar 

  • Too J, Abdullah AR, Mohd Saad N (2019) A new quadratic binary Harris Hawk optimization for feature selection. Electronics 8(10):1130

    Article  Google Scholar 

  • Verma B, McLeod P, Klevansky A (2010) Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst Appl 37(4):3344–3351

    Article  Google Scholar 

  • Wang L, Zou F, Hei X, Yang D, Chen D, Jiang Q, Cao Z (2014) A hybridization of teaching–learning-based optimization and differential evolution for chaotic time series prediction. Neural Comput Appl 25(6):1407–1422

    Article  Google Scholar 

  • Wichard J, Cammann H, Stephan C, Tolxdorff T (2008) Classification models for early detection of prostate cancer. J Biomed Biotechnol

  • Yang XS (2010) Firefly algorithm, Levy flights and global optimization. Research and development in intelligent systems XXVI. Springer, London, pp 209–218

    Chapter  Google Scholar 

  • Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC) , IEEE, pp 210–214

  • Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Sun L (2019) Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod 215:1203–1222

    Article  Google Scholar 

  • Zhang Y, Wu X, Lu S, Wang H, Phillips P, Wang S (2016) Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation 92(9):873–885

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Thawkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thawkar, S. A hybrid model using teaching–learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography. J Ambient Intell Human Comput 12, 8793–8808 (2021). https://doi.org/10.1007/s12652-020-02662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02662-z

Keywords

Navigation