Skip to main content
Log in

Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce some new linguistic prioritized aggregation operators which simultaneously considers the priority among the attributes and the uncertainty in linguistic terms under the linguistic single-valued neutrosophic set (LSVNS). For this, firstly the operational laws for LSVNSs are introduced along with their properties. Based on these operations, we proposes some prioritized weighted and ordered weighted averaging as well as geometric aggregation operators for a collection of linguistic single-valued neutrosophic numbers. Further, the desirable properties of these operators are studied. Finally, a decision-making approach presents and illustrate with a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Basset M, Mohamed M, Hussien AN, Sangaiah AK (2017a) A novel group decision-making model based on triangular neutrosophic numbers. Soft Comput. https://doi.org/10.1007/s00500-017-2758-5

    Article  Google Scholar 

  • Abdel-Basset M, Mohamed M, Sangaiah AK (2017b) Neutrosophic ahp-delphi group decision making model based on trapezoidal neutrosophic numbers. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-017-0548-7

    Article  Google Scholar 

  • Arora R, Garg H (2018) Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Sci Iran 25(1):466–482

    Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  • Fang Z, Ye J (2017) Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry 9:111. https://doi.org/10.3390/sym9070111

    Article  MathSciNet  Google Scholar 

  • Garg H (2016a) Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput Ind Eng 101:53–69

    Article  Google Scholar 

  • Garg H (2016b) Some series of intuitionistic fuzzy interactive averaging aggregation operators. SpringerPlus 5(1):999. https://doi.org/10.1186/s40064-016-2591-9

    Article  Google Scholar 

  • Garg H (2017a) Distance and similarity measure for intuitionistic multiplicative preference relation and its application. Int J Uncertain Quantif 7(2):117–133

    Article  Google Scholar 

  • Garg H (2017b) Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng Appl Artif Intell 60:164–174

    Article  Google Scholar 

  • Garg H (2017c) Some methods for strategic decision-making problems with immediate probabilities in pythagorean fuzzy environment. Int J Intell Syst. https://doi.org/10.1002/int.21949

    Article  Google Scholar 

  • Garg H (2017d) Some picture fuzzy aggregation operators and their applications to multicriteria decision-making. Arab J Sci Eng 42(12):5275–5290

    Article  MathSciNet  Google Scholar 

  • Garg H (2018a) A linear programming method based on an improved score function for interval-valued pythagorean fuzzy numbers and its application to decision-making. Int J Uncertain Fuzziness Knowl Based Syst 26(1):67–80

    Article  MathSciNet  Google Scholar 

  • Garg H (2018b) Linguistic pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int J Intell Syst. https://doi.org/10.1002/int.21979

    Article  Google Scholar 

  • Garg H (2018c) New exponential operational laws and their aggregation operators for interval-valued pythagorean fuzzy multicriteria decision-making. Int J Intell Syst 33(3):653–683. https://doi.org/10.1002/int.21966

    Article  Google Scholar 

  • Garg H, Kumar K (2017) Some aggregation operators for linguistic intuitionistic fuzzy set and its application to group decision-making process using the set pair analysis. Arab J Sci Eng. https://doi.org/10.1007/s13369-017-2986-0

    Article  MATH  Google Scholar 

  • Garg H, Nancy (2017a) Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment. Appl Intell. https://doi.org/10.1007/s10489-017-1070-5

    Article  Google Scholar 

  • Garg H, Nancy (2017b) Some new biparametric distance measures on single-valued neutrosophic sets with applications to pattern recognition and medical diagnosis. Information 8:162. https://doi.org/10.3390/info8040162

    Article  Google Scholar 

  • Garg H, Agarwal N, Tripathi A (2017) Some improved interactive aggregation operators under interval-valued intuitionistic fuzzy environment and its application to decision making process. Sci Iran E 24(5):2581–2604

    Google Scholar 

  • Hezam IM, Abdel-Baset M, Smarandache F (2015) Taylor series approximation to solve neutrosophic multiobjective programming problem. Neutrosophic Sets Syst 10:39–45

    Google Scholar 

  • Ji P, Wang JQ, Zhang HY (2016) Frank prioritized bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third-party logistics providers. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2660-6

    Article  Google Scholar 

  • Kaur G, Garg H (2018a) Cubic intuitionistic fuzzy aggregation operators. Int J Uncertain Quantif. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020471

    Article  MathSciNet  Google Scholar 

  • Kaur G, Garg H (2018b) Multi-attribute decision-making based on bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1):65. https://doi.org/10.3390/e20010065

    Article  MathSciNet  Google Scholar 

  • Kumar K, Garg H (2016) TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Computat Appl Math. https://doi.org/10.1007/s40314-016-0402-0

    Article  MATH  Google Scholar 

  • Kumar K, Garg H (2017) Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl Intell. https://doi.org/10.1007/s10489-017-1067-0

    Article  Google Scholar 

  • Li Y, Liu P, Chen Y (2016) Some single valued neutrosophic number heronian mean operators and their application in multiple attribute group decision making. Informatica 27(1):85–110

    Article  Google Scholar 

  • Li YY, Zhang HY, Wang JQ (2017) Linguistic neutrosophic sets and its application to multi-criteria decision-making problems. Int J Uncertain Quantif 7(2):135–154

    Article  Google Scholar 

  • Liu P (2014) Some hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans Fuzzy Syst 22(1):83–97

    Article  Google Scholar 

  • Liu P, Wang Y (2014) Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted bonferroni mean. Neural Comput Appl 25(7–8):2001–2010

    Article  Google Scholar 

  • Liu P, Wang Y (2016) Interval neutrosophic prioritized owa operator and its application to multiple attribute decision making. J Sci Sci Complex 29(3):681–697

    Article  Google Scholar 

  • Nancy, Garg H (2016a) An improved score function for ranking neutrosophic sets and its application to decision-making process. Int J Uncertain Quantif 6(5):377–385

    Article  Google Scholar 

  • Nancy, Garg H (2016b) Novel single-valued neutrosophic decision making operators under frank norm operations and its application. Int J Uncertain Quantif 6(4):361–375

    Article  Google Scholar 

  • Peng JJ, Wang JQ, Wang J, Zhang HY, Chen ZH (2016) Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int J Syst Sci 47(10):2342–2358

    Article  Google Scholar 

  • Rani D, Garg H (2017) Distance measures between the complex intuitionistic fuzzy sets and its applications to the decision-making process. Int J Uncertain Quantif 7(5):423–439

    Article  MathSciNet  Google Scholar 

  • Singh S, Garg H (2017) Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl Intell 46(4):788–799. https://doi.org/10.1007/s10489-016-0869-9

    Article  Google Scholar 

  • Smarandache F (1999) A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic. American Research Press, Rehoboth

    MATH  Google Scholar 

  • Wang H, Smarandache F, Zhang YQ, Sunderraman R (2010) Single valued neutrosophic sets. Multisp Multistruct 4:410–413

    MATH  Google Scholar 

  • Jq Wang, Yang Y, Li L (2016) Multi-criteria decision-making method based on single-valued neutrosophic linguistic maclaurin symmetric mean operators. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2747-0

    Article  Google Scholar 

  • Wang W, Liu X (2013) Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on einstein operation and its application to decision making. J Intell Fuzzy Syst 25(2):279–290

    MathSciNet  MATH  Google Scholar 

  • Wang Z, Wang W, Li KW (2008) Multi-attribute decision making models and methods under interval-valued intuitionistic fuzzy environment. In: Proceedings of the 4th IEEE international conference on control and decision, pp 2420–2425

  • Wu XH, Wang JQ, Peng JJ, Chen XH (2016) Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int J Fuzzy Syst 18(6):1104–1116

    Article  Google Scholar 

  • Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  Google Scholar 

  • Yang L, Li B (2016) A multi-criteria decision-making method using power aggregation operators for single-valued neutrosophic sets. Int J Database Theory Appl 9(2):23–32

    Article  Google Scholar 

  • Ye J (2014) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst 26(5):2459–2466

    MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning: part-1. Inf Sci 8:199–251

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the editor and anonymous reviewers for their constructive comments and suggestions that helped us in improving the paper significantly. Also, the second author (Nancy) would like to thank the University Grant Commission, New Delhi, India for providing financial support under Maulana Azad National Fellowship scheme wide File No. F1-17.1/2017-18/MANF-2017-18-PUN-82613/(SA-III/Website) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Proof of the Theorem 6

Proof

Firstly, we will prove Eq. (2) by mathematical induction on n. Since for all \(i, \beta _{i}=\langle s_{\theta _{i}}, s_{\psi _{i}}, s_{\sigma _{i}}\rangle\) is LSVNN so we have \(\theta _{i}+\psi _{i}+\sigma _{i}\le 3t.\) Then the following steps of the mathematical induction have been followed.

  • Step 1 For \(n=2,\) we have

    $$\begin{aligned} \text {LSVNPWA}(\beta _{1},\beta _{2})= & {} \bigoplus \limits _{i=1}^{2}\frac{T_{i}}{\sum _{i=1}^{2}T_{i}} \beta _{i}\\= & {} \frac{T_{1}}{\sum _{i=1}^{2}T_{i}} \beta _{1} \oplus \frac{T_{2}}{\sum _{i=1}^{2}T_{i}} \beta _{2}\\= & {} \left\langle s_{t\left( 1-\left( 1- \frac{\theta _1}{t}\right) ^{\frac{T_{1}}{\sum \limits _{i=1}^{2}T_{i}}}\right) }, s_{t\left( \left( \frac{\psi _1}{t}\right) ^{\frac{T_{1}}{\sum \limits _{i=1}^{2}T_{i}}}\right) } , s_{t\left( \left( \frac{\sigma _1}{t}\right) ^{\frac{T_{1}}{\sum \limits _{i=1}^{2}T_{i}}}\right) }\right\rangle \\&\oplus \left\langle s_{t\left( 1-\left( 1- \frac{\theta _2}{t}\right) ^{\frac{T_{1}}{\sum \limits _{i=1}^{2}T_{i}}}\right) }, s_{t\left( \left( \frac{\psi _2}{t}\right) ^{\frac{T_{1}}{\sum \limits _{i=1}^{2}T_{i}}}\right) } , s_{t\left( \left( \frac{\sigma _2}{t}\right) ^{\frac{T_{1}}{\sum \limits _{i=1}^{2}T_{i}}}\right) }\right\rangle \\= & {} \left\langle s_{t\bigg (1-\prod \limits _{i=1}^{2}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\bigg )}, s_{t\bigg (\prod \limits _{i=1}^{2}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\bigg )}, \right. \\&\left. \quad s_{t\bigg (\prod \limits _{i=1}^{2}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\bigg )} \right\rangle \end{aligned}$$

    Hence result is true for \(n=2.\)

  • Step 2 Assume the Eq. (2) is true for \(n=z,\) then for \(n=z+1,\) we have

    $$\begin{aligned}&\bigoplus \limits _{i=1}^{z+1}\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}} \beta _{i}=\bigoplus \limits _{i=1}^{z}\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}} \beta _{i}\oplus \frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}} \beta _{z+1}\\&\quad = \left\langle s_{t\left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{z}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{z}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) } \right\rangle \\&\quad \oplus \left\langle s_{t\left( 1-\left( 1- \frac{\theta _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \left( \frac{\psi _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \left( \frac{\sigma _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }\right\rangle \\&\quad = \left\langle s_{t\left( \left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) + \left( 1-\left( 1- \frac{\theta _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) -\left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) \left( 1-\left( 1- \frac{\theta _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) \right) },\right. \\&\left. \qquad s_{t\left( \prod \limits _{i=1}^{z}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) \left( \left( \frac{\psi _{z+1}}{t} \right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{z}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) \left( \left( \frac{\sigma _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }\right\rangle \\&\quad = \left\langle s_{t\left( 1-\prod \limits _{i=1}^{z+1}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{z+1}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{z+1}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) } \right\rangle \end{aligned}$$

Hence the result given in Eq. (2), is true for all positive integers n.

Further, \(0 \le \frac{\theta _i}{t} \le 1 \Rightarrow 0 \le 1- \frac{\theta _i}{t} \le 1 \Rightarrow 0 \le 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le 1 \Rightarrow 0 \le t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le t\). Similarly, we get

$$\begin{aligned} 0 \le t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) , t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le t. \end{aligned}$$

Also,

$$\begin{aligned} t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) +t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) +t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le 3t \end{aligned}$$

Thus, Eq. (2) is still LSVNN, which completes the proof of the theorem. \(\square\)

Proof of the Theorem 7

Proof

  1. (P1)

    Since \(\beta _i=\beta\) for all i, then we have

    $$\begin{aligned} \text {LSVNPWA}(\beta _1,\beta _2,\ldots ,\beta _n)= & {} \bigoplus \limits _{i=1}^{n}\frac{T_i}{\sum _{i=1}^n T_i}\beta \\= & {} \sum _{i=1}^{n}\frac{T_i}{\sum _{i=1}^n T_i}\beta \\= & {} \beta \end{aligned}$$
  2. (P2)

    Since \(s_{\theta _i^{\prime }} \ge s_{\theta _i}\) which implies \(\theta _i^{\prime } \ge \theta _i\) and hence, we have

    $$\begin{aligned}&0\le \left( 1-\frac{\theta _i^{\prime }}{t}\right) \le \left( 1-\frac{\theta _i}{t}\right) \le 1 \\&\quad \Rightarrow \prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i^{\prime }}{t}\right) \le \prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t} \right) \\&\quad \Rightarrow \prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}} \le \prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}} \\&\quad \Rightarrow 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}} \ge 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}} \\&\quad \Rightarrow t \left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) \ge t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) \end{aligned}$$

    which implies

    $$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) } \ge s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) } \end{aligned}$$
    (13)

    Similarly, for \(s_{\psi _i^{\prime }} \le s_{\psi _i}\) and \(s_{\sigma _i^{\prime }} \le s_{\sigma _i}\), we can get

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _{i}^{\prime }}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$
    (14)

    and

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i^{\prime }}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$
    (15)

    Thus, from Eqs. (13), (14), (15) and Definition 6, we have

    $$\begin{aligned} \text {LSVNPWA}(\beta _1^{\prime }, \beta _2^{\prime },\ldots , \beta _n^{\prime }) \ge \text {LSVNPWA}(\beta _1,\beta _2,\ldots ,\beta _n) \end{aligned}$$
  3. (P3)

    Since \(\min \limits _{i}\{s_{\theta _i}\} \le s_{\theta _i} \le \max \limits _{i}\{s_{\theta _i}\}\), \(\min \limits _{i}\{s_{\psi _i}\} \le s_{\psi _i} \le \max \limits _{i}\{s_{\psi _i}\}\) and \(\min \limits _{i}\{s_{\sigma _i}\} \le s_{\sigma _i} \le \max \limits _{i}\{s_{\sigma _i}\}\), thus from above property, we have

    $$\begin{aligned} \beta ^- \le \text {LSVNPWA}(\beta _1,\beta _2,\ldots ,\beta _n)\le \beta ^+ \end{aligned}$$

\(\square\)

Proof of the Theorem 10

Proof

We will prove Eq. (5) by mathematical induction on n. Since for all \(i, \beta _{i}=\langle s_{\theta _{i}},s_{\psi _{i}}, s_{\sigma _{i}}\rangle\) is LSVNN so we have \(0 \le \theta _{i}+\psi _{i}+\sigma _{i}\le 3t.\) Then the following steps of the mathematical induction have been followed.

  • Step 1 For \(n=2,\) we have

    $$\begin{aligned}&\text {LSVNPWG}(\beta _{1},\beta _{2})=\bigotimes \limits _{i=1}^{2} \beta _{i}^\frac{T_{i}}{\sum _{i=1}^{2}T_{i}}\\&\quad = \beta _{1}^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}} \otimes \beta _{2}^{\frac{T_{2}}{\sum _{i=1}^{2}T_{i}}}\\&\quad = \left\langle s_{t\left( \left( \frac{\theta _1}{t}\right) ^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}}\right) }, s_{t\left( 1-\left( 1- \frac{\psi _1}{t}\right) ^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}}\right) }, s_{t\left( 1-\left( 1- \frac{\sigma _1}{t}\right) ^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}}\right) }\right\rangle \\&\quad \otimes \left\langle s_{t\left( \left( \frac{\theta _2}{t}\right) ^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}}\right) }, s_{t\left( 1-\left( 1- \frac{\psi _2}{t}\right) ^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}}\right) }, s_{t\left( 1-\left( 1- \frac{\sigma _2}{t}\right) ^{\frac{T_{1}}{\sum _{i=1}^{2}T_{i}}}\right) }\right\rangle \\&\quad = \left\langle s_{t\left( \prod \limits _{i=1}^{2}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{2}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{2}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \right\rangle \end{aligned}$$

    Hence result is true for \(n=2.\)

  • Step 2 Assume the Eq. (5) is true for \(n=z,\) then for \(n=z+1,\) we have

    $$\begin{aligned}&\bigotimes \limits _{i=1}^{z+1} \beta _{i}^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}=\bigotimes \limits _{i=1}^{z} \beta _{i}^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}} }\otimes \beta _{z+1}^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\\&\quad = \left\langle s_{t\left( \prod \limits _{i=1}^{z}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) } \right\rangle \\&\quad \otimes \left\langle s_{t\left( \left( \frac{\theta _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( 1-\left( 1- \frac{\psi _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( 1-\left( 1- \frac{\sigma _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }\right\rangle \\&\quad = \left\langle s_{t\left( \prod \limits _{i=1}^{z}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}} \left( \frac{\theta _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, \right. \\&\quad s_{t\left( \left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) + \left( 1-\left( 1- \frac{\psi _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) - \left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) \left( 1-\left( 1- \frac{\psi _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) \right) }, \\&\left. \quad s_{t\left( \left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) + \left( 1-\left( 1- \frac{\sigma _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) - \left( 1-\prod \limits _{i=1}^{z}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) \left( 1-\left( 1- \frac{\sigma _{z+1}}{t}\right) ^{\frac{T_{z+1}}{\sum _{i=1}^{z+1}T_{i}}}\right) \right) }\right\rangle \\&\quad = \left\langle s_{t\left( \prod \limits _{i=1}^{z+1}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{z+1}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{z+1}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{z+1}T_{i}}}\right) } \right\rangle \end{aligned}$$

Hence the result given in Eq. (5), is true for all positive integers n.

On the other hand, we have, \(0 \le \frac{\theta _i}{t} \le 1 \Rightarrow 0 \le \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le 1\) which implies \(0 \le t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le t.\) Similarly, we get

$$\begin{aligned}&0 \le t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le t \\ \text {and}&0 \le t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le t \end{aligned}$$

Also, \(0 \le t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) + t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) + t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \le 3t.\) Hence, the LSVNPWG operator is LSVNN. \(\square\)

Proof of the Theorem 11

Proof

  1. (P1)

    Since \(\beta _i=\beta\) for all i, then we have

    $$\begin{aligned} \text {LSVNPWG}(\beta _1,\beta _2,\ldots ,\beta _n)= & {} \bigotimes \limits _{i=1}^{n}\beta ^{\frac{T_i}{\sum _{i=1}^n T_i}}\\= & {} \beta ^{\frac{\sum _{i=1}^{n}T_i}{\sum _{i=1}^n T_i}} \\= & {} \beta \end{aligned}$$
  2. (P2)

    Since \(s_{\theta _i^{\prime }} \ge s_{\theta _i}\) for all i which implies

    $$\begin{aligned}&\theta _i^{\prime } \ge \theta _i \\&\quad \Rightarrow \left( \frac{\theta _i^{\prime }}{t} \right) \ge \left( \frac{\theta _i}{t}\right) \\&\quad \Rightarrow \prod \limits _{i=1}^{n}\left( \frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}} \ge \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}} \\&\quad \Rightarrow t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) \ge t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) \end{aligned}$$

    Thus, one has

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i^{\prime }}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \ge s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$
    (16)

    Similarly, for \(s_{\psi _i^{\prime }} \le s_{\psi _i}\) and \(s_{\sigma _i^{\prime }} \le s_{\sigma _i}\), we can get

    $$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\psi _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) } \le s_{t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) } \end{aligned}$$
    (17)

    and

    $$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\sigma _i^{\prime }}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) } \le s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_i}{\sum _{i=1}^{n} T_i}}\right) } \end{aligned}$$
    (18)

    Thus, from Eqs. (16), (17), (18) and Definition 6, we have

    $$\begin{aligned} \text {LSVNPWG}(\beta _1^{\prime }, \beta _2^{\prime },\ldots , \beta _n^{\prime }) \ge \text {LSVNPWG}(\beta _1,\beta _2,\ldots ,\beta _n) \end{aligned}$$
  3. (P3)

    Since \(\min \limits _{i}\{s_{\theta _i}\} \le s_{\theta _i} \le \max \limits _{i}\{s_{\theta _i}\}\), \(\min \limits _{i}\{s_{\psi _i}\} \le s_{\psi _i} \le \max \limits _{i}\{s_{\psi _i}\}\) and \(\min \limits _{i}\{s_{\sigma _i}\} \le s_{\sigma _i} \le \max \limits _{i}\{s_{\sigma _i}\}\), thus from above property, we have

    $$\begin{aligned} \beta ^- \le \text {LSVNPWG}(\beta _1,\beta _2,\ldots ,\beta _n)\le \beta ^+ \end{aligned}$$

\(\square\)

Proof of the Theorem 14

Proof

Let \(\beta _i= \langle s_{\theta _i}, s_{\psi _i}, s_{\sigma _i} \rangle\), \((i=1,2,\ldots ,n)\) be the collection of LSVNNs and \(0 \le 1-(\theta _i/t) \le 1.\) Then by using lemma 1, we have

$$\begin{aligned}&\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le \sum \limits _{i=1}^{n} {\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \left( 1-\frac{\theta _i}{t}\right) \\&\quad \Rightarrow \prod _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le \sum _{i=1}^{n} {\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}- \sum _{i=1}^{n} {\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \left( \frac{\theta _i}{t}\right) \\&\quad \Rightarrow 1-\prod _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \ge \sum \limits _{i=1}^n \frac{T_{i}}{\sum _{i=1}^{n}T_{i}}\left( \frac{\theta _i}{t}\right) \\&\quad \Rightarrow 1-\prod _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \ge \prod _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}. \end{aligned}$$

Thus, we have

$$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) }\ge s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$
(19)

Similarly, we get

$$\begin{aligned}&s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \le s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \end{aligned}$$
(20)
$$\begin{aligned} \text {and} \ &s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \le s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \end{aligned}$$
(21)

Thus, from Eqs. (19), (20), (21) and Definition 6, we get

$$\begin{aligned}&\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } , s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \right\rangle \\&\quad \ge \left\langle s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \right\rangle . \end{aligned}$$

Hence,

$$\begin{aligned} \text {LSVNPWA}(\beta _{1},\beta _{2},\ldots ,\beta _{n}) \ge \text {LSVNPWG}(\beta _{1},\beta _{2},\ldots ,\beta _{n}) \end{aligned}$$

\(\square\)

Proof of the Theorem 15

Proof

We will prove the parts (i) and (iii) and the proofs of remaining are similar.

  1. (i)

    Since \(\beta _i= \langle s_{\theta _i}, s_{\psi _i}, s_{\sigma _i} \rangle\), \((i=1,2,\ldots ,n)\), \(\beta =\langle s_{\theta }, s_{\psi }, s_{\sigma } \rangle\) are LSVNNs and \(\lambda>0\), be a real number, then

    $$\begin{aligned}&\text {LSVNPWA}(\beta _{1}\oplus \beta ,\beta _{2}\oplus \beta ,\ldots ,\beta _{n}\oplus \beta )\\&\quad = \left\langle s_{t\left( 1-\prod \limits _{i=1}^{n} \left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t \left( \prod \limits _{i=1}^{n} \left( \frac{\psi _i\psi }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, \right. \\&\left. \qquad \;s_{t \left( \prod \limits _{i=1}^{n} \left( \frac{\sigma _i\sigma }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }\right\rangle \\ \text {and LSVNPWA}&(\beta _{1}\otimes \beta ,\beta _{2}\otimes \beta ,\ldots ,\beta _{n}\otimes \beta )\\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i\theta }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t \left( \prod \limits _{i=1}^{n} \left( 1-\left( 1-\frac{\psi _i}{t}\right) \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) },\right. \\&\left. \qquad \;s_{t \left( \prod \limits _{i=1}^{n} \left( 1-\left( 1-\frac{\sigma _i}{t}\right) \left( 1-\frac{\sigma }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }\right\rangle \\ \end{aligned}$$

    By using Lemma 2, we have

    $$\begin{aligned} {\theta _{i}}/{t} +{\theta }/{t}-({\theta _{i}}/{t})({\theta }/{t})\ge ({\theta _{i}}/{t})({\theta }/{t}) \end{aligned}$$

    which implies

    $$\begin{aligned}&1-\theta _i/t - \theta /t+ \theta _i\theta /t^2 \le 1-({\theta _{i}}/{t})({\theta }/{t}) \\&\quad \Rightarrow \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \le 1-\frac{\theta _i\theta }{t^2} \\&\quad \Rightarrow \prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le \prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i\theta }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \\&\quad \Rightarrow t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \\&\quad \ge t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i\theta }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \end{aligned}$$

    Thus,

    $$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \ge s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i\theta }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \end{aligned}$$

    Also, we have \(1-\left( 1-{\psi _{i}}/{t}\right) \left( 1-{\psi }/{t}\right) \ge {\psi _{i}\psi }/{t^2}\), which implies,

    $$\begin{aligned} t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\frac{\psi _i}{t}\right) \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \ge t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i\psi }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \end{aligned}$$

    Thus, we get

    $$\begin{aligned} s_{t\left(\prod \limits _{i=1}^{n}\left( 1- \left( 1-\frac{\psi _i}{t}\right) \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \ge s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi _i\psi }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$

    Similarly, we get

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left(1- \left( 1-\frac{\sigma _i}{t}\right) \left( 1-\frac{\sigma }{t}\right) \right) ^{ \frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \ge s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma _i\sigma }{t^2}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$

    Therefore, by using Definition 6, we get

    $$\begin{aligned} \text {LSVNPWA}(\beta _{1}\oplus \beta ,\beta _{2}\oplus \beta ,\ldots ,\beta _{n}\oplus \beta )\ge \text {LSVNPWA}(\beta _{1}\otimes \beta ,\beta _{2}\otimes \beta ,\ldots ,\beta _{n}\otimes \beta ) \end{aligned}$$

    Hence the result.

  2. (iii)

    By using Lemma 2, we have

    $$\begin{aligned} \left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) + \left( \frac{\theta }{t}\right) -\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) \right) \left( \frac{\theta }{t}\right) \\ \ge \left( 1-\prod \limits _{i=1}^{n}\left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \left( \frac{\theta }{t}\right) \end{aligned}$$

    Therefore,

    $$\begin{aligned} &1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\ge {} \left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \left( \frac{\theta }{t}\right) \\&\Rightarrow {} t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \\&\ge {} t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \left( \frac{\theta }{t}\right) \end{aligned}$$

    Thus, we have,

    $$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \ge s_{t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\frac{\theta _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \left( \frac{\theta }{t}\right) } \end{aligned}$$

    Also, we have

    $$\begin{aligned}&\prod \limits _{i=1}^{n} \left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}+ \left( \frac{\psi }{t}\right) -\prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) \left( \frac{\psi }{t}\right) \ge \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \left( \frac{\psi }{t}\right) \\&\quad \Rightarrow 1-\left( 1-\prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \left( 1-\frac{\psi }{t}\right) \ge \prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \left( \frac{\psi }{t}\right) \\&\quad \Rightarrow t\left( 1-\left( 1-\prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \left( 1-\frac{\psi }{t}\right) \right) \ge t\left( \prod \limits _{i=1}^{n} \left( \frac{\psi _i\psi }{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \end{aligned}$$

    Hence,

    $$\begin{aligned} s_{t\left( 1-\left( 1-\prod \limits _{i=1}^{n}\left( \frac{\psi _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \left( 1-\frac{\psi }{t}\right) \right) } \ge s_{t\left( \prod \limits _{i=1}^{n} \left( \frac{\psi _i\psi }{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \end{aligned}$$

    Similarly, we can get

    $$\begin{aligned} s_{t\left( 1-\left( 1-\prod \limits _{i=1}^{n}\left( \frac{\sigma _i}{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) \left( 1-\frac{\sigma }{t}\right) \right) } \ge s_{t\left( \prod \limits _{i=1}^{n} \left( \frac{\sigma _i\sigma }{t}\right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) } \end{aligned}$$

    Hence, by Definition 6, we get

    $$\begin{aligned} \text {LSVNPWA}(\beta _{1}\oplus \beta ,\beta _{2}\oplus \beta ,\ldots ,\beta _{n}\oplus \beta )\ge \text {LSVNPWA}(\beta _{1},\beta _{2},\ldots ,\beta _{n})\otimes \beta . \end{aligned}$$

\(\square\)

Proof of the Theorem 16

Proof

We will prove part (i) and (iii) and the proofs of remaining parts are similar.

  1. (i)

    Since \(\beta _{i}(i=1,2,\ldots ,n)\) and \(\beta\) are the LSVNNs then for \(\lambda>0\) we have

    $$\begin{aligned}&\text {LSVNPWA}(\lambda \beta _{1}\oplus \beta ,\lambda \beta _{2}\oplus \beta ,\ldots ,\lambda \beta _{n}\oplus \beta ) \\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) ^{\lambda }\left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \right) }, s_{t \left( \prod \limits _{i=1}^{n}\left( \left( \frac{\psi _i}{t}\right) ^{\lambda } \left( \frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, \right. \\&\left. \qquad \;s_{t \left( \prod \limits _{i=1}^{n}\left( \left( \frac{\sigma _i}{t}\right) ^{\lambda } \left( \frac{\sigma }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \right\rangle \\&\text {LSVNPWA}(\beta _{1}^{\lambda }\otimes \beta ,\beta _{2}^{\lambda }\otimes \beta ,\ldots ,\beta _{n}^{\lambda }\otimes \beta )\\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\left( \frac{\theta _i}{t}\right) ^{\lambda } \left( \frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }, s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\frac{\psi _i}{t}\right) ^{\lambda } \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) },\right. \\&\left. \qquad \; s_{t\left( \prod \limits _{i=1}^{n} \left( 1-\left( 1-\frac{\sigma _i}{t}\right) ^{\lambda } \left( 1-\frac{\sigma }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) }\right\rangle \end{aligned}$$

    By Lemma 3, we have

    $$\begin{aligned}&1-\left( 1-{\theta _{i}}/t\right) ^{\lambda }\left( 1-{\theta }/t\right) \ge \left( {\theta _{i}}/t\right) ^{\lambda }\left( {\theta }/t\right) \\&\quad \Rightarrow \left( 1-{\theta _{i}}/t\right) ^{\lambda }\left( 1-{\theta }/t\right) \le 1-\left( {\theta _{i}}/t\right) ^{\lambda }\left( {\theta }/t\right) \\&\quad \Rightarrow \prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) ^{\lambda }\left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le \prod \limits _{i=1}^{n}\left( 1-\left( \frac{\theta _i}{t}\right) ^{\lambda } \left( \frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \\&\quad \Rightarrow t \left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) ^{\lambda } \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \\&\qquad \ge t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\left( \frac{\theta _i}{t}\right) ^{\lambda } \left( \frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) \end{aligned}$$

    Thus,

    $$\begin{aligned} s_{t \left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) ^{\lambda } \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \ge s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\left( \frac{\theta _i}{t}\right) ^{\lambda } \left( \frac{\theta }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$

    Also, we have

    $$\begin{aligned}&\left( \frac{\psi _i}{t}\right) ^{\lambda } \left( \frac{\psi }{t}\right) \le 1-\left( 1-\frac{\psi _i}{t}\right) ^{\lambda } \left( 1-\frac{\psi }{t}\right) \\&\quad \Rightarrow t\prod \limits _{i=1}^{n}\left( \left( \frac{\psi _i}{t}\right) ^{\lambda } \left( \frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \le t\prod \limits _{i=1}^{n}\left( 1-\left( 1-\frac{\psi _i}{t}\right) ^{\lambda } \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}} \end{aligned}$$

    Hence,

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \left( \frac{\psi _i}{t}\right) ^{\lambda } \left( \frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\frac{\psi _i}{t}\right) ^{\lambda } \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$

    Similarly, we have

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \left( \frac{\sigma _i}{t}\right) ^{\lambda } \left( \frac{\sigma }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\frac{\sigma _i}{t}\right) ^{\lambda } \left( 1-\frac{\sigma }{t}\right) \right) ^{\frac{T_{i}}{\sum _{i=1}^{n}T_{i}}}\right) } \end{aligned}$$

    Therefore, by Definition 6, we get

    $$\begin{aligned} \text {LSVNPWA}(\lambda \beta _{1}\oplus \beta ,\lambda \beta _{2}\oplus \beta ,\ldots ,\lambda \beta _{n}\oplus \beta )\ge \text {LSVNPWA}(\beta _{1}^{\lambda }\otimes \beta ,\beta _{2}^{\lambda }\otimes \beta ,\ldots ,\beta _{n}^{\lambda }\otimes \beta ) \end{aligned}$$

    Hence the result.

  2. (iii)

    Since \(\beta _{i}(i=1,2,\ldots ,n)\) and \(\beta\) are the LSVNNs then for \(\lambda>0\) we have

    $$\begin{aligned}&\text {LSVNPWA}(\beta _{1}^{\lambda }\oplus \beta ,\beta _{2}^{\lambda }\oplus \beta ,\ldots ,\beta _{n}^{\lambda }\oplus \beta )\\&\quad = \left\langle s_{t\left( 1-\prod \limits _{i=1}^{n} \left( \left( 1-\left( \frac{\theta _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }, s_{t\left( \prod \limits _{i=1}^{n}\left( \left( 1-\left( 1-\frac{\psi _i}{t}\right) ^{\lambda } \right) \left( \frac{\psi }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) },\right. \\&\left. \qquad \;s_{t\left( \prod \limits _{i=1}^{n}\left( \left( 1-\left( 1-\frac{\sigma _i}{t}\right) ^{\lambda }\right) \left( \frac{\sigma }{t}\right) \right) ^{ \frac{T_i}{\sum _{i=1}^n T_i}}\right) } \right\rangle \\&\text {LSVNPWA}(\lambda \beta _{1}\otimes \beta ,\lambda \beta _{2}\otimes \beta ,\ldots ,\lambda \beta _{n}\otimes \beta )\\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( 1-\frac{\theta _i}{t}\right) ^{\lambda }\right) \left( \frac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }, s_{t \left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \frac{\psi _i}{t}\right) ^{\lambda } \right) \left( 1-\frac{\psi }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \right. , \\&\left. \qquad \; s_{t \left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \frac{\sigma _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\sigma }{t}\right) \right) ^{ \frac{T_i}{\sum _{i=1}^n T_i}}\right) } \right\rangle \end{aligned}$$

    From Lemma 3, \(\big (1-(\theta _{i}/t)\big )^{\lambda } \big (\theta /t\big )\ge -\big (\theta _{i}/t\big )^{\lambda }\big (1-(\theta /t)\big ),\) which implies, \(1-(\theta /t)+\big (1-(\theta _{i}/t)\big )^{\lambda } \big (\theta /t\big )\ge 1-(\theta /t)-\big (\theta _{i}/t\big )^{\lambda }\big (1-(\theta /t)\big )\) \(\Rightarrow 1-(\theta /t)\big (1-\big (1-(\theta _{i}/t)\big )^{\lambda }\big ) \ge \big (1-(\theta /t)\big )\big (1-(\theta _{i}/t)^{\lambda }\big ) \Rightarrow\) \(\prod \limits _{i=1}^{n}\bigg (1-(\theta /t)\big (1-\big (1-(\theta _{i}/t)\big )^{\lambda }\big )\bigg )^{\frac{T_i}{\sum _{i=1}^n T_i}} \ge \prod \limits _{i=1}^{n}\bigg (\big (1-(\theta /t)\big )\big (1-(\theta _{i}/t)^{\lambda }\big )\bigg )^{\frac{T_i}{\sum _{i=1}^n T_i}} \Rightarrow\) \(1-\prod \limits _{i=1}^{n}\bigg (1-(\theta /t)\big (1-\big (1-(\theta _{i}/t)\big )^{\lambda }\big )\bigg )^{\frac{T_i}{\sum _{i=1}^n T_i}} \le 1-\prod \limits _{i=1}^{n}\bigg (\big (1-(\theta /t)\big )\big (1-(\theta _{i}/t)^{\lambda }\big )\bigg )^{\frac{T_i}{\sum _{i=1}^n T_i}}\), which implies

    $$\begin{aligned}&t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta }{t}\right) \left( 1-\left( \frac{\theta _i}{t}\right) ^{ \lambda }\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) \\&\quad \ge t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\left( \frac{\theta }{t}\right) \left( 1-\left( 1-\frac{\theta _i}{t}\right) ^{\lambda } \right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) \end{aligned}$$

    Thus,

    $$\begin{aligned} s_{t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta }{t}\right) \left( 1-\left( \frac{\theta _i}{t}\right) ^{ \lambda }\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \ge s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\left( \frac{\theta }{t}\right) \left( 1-\left( 1-\frac{\theta _i}{t}\right) ^{\lambda } \right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \end{aligned}$$

    Also, we have \(\big (1-\psi _{i}/t\big )^{\lambda }\big (\psi /t\big )\ge -\big (\psi _{i}/t\big )^{\lambda }\big (1-(\psi /t)\big ),\) which implies, \(\big (\psi /t\big )-\big (1-\psi _{i}/t\big )^{\lambda }\big (\psi /t\big )\le \big (\psi /t\big )+\big (\psi _{i}/t\big )^{\lambda }\big (1-(\psi /t)\big )\) \(\Rightarrow\) \(\left( \tfrac{\psi }{t}\right) \left( 1-\big (1-\tfrac{\psi }{t}\big )^{\lambda }\right) \le 1-\left( 1-\left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\psi }{t}\right)\) implies,

    $$\begin{aligned}&t\prod \limits _{i=1}^{n}\left( \frac{\psi }{t} \left( 1-\left( 1-\frac{\psi }{t}\right) ^{\lambda }\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}} \\&\quad \le t\prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \frac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\psi }{t} \right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}} \end{aligned}$$

    Thus,

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\psi }{t} \left( 1-\left( 1-\frac{\psi }{t}\right) ^{\lambda }\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \frac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\psi }{t} \right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \end{aligned}$$

    Similarly, we have

    $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( \frac{\sigma }{t} \left( 1-\left( 1-\frac{\sigma }{t}\right) ^{\lambda }\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \frac{\sigma _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\sigma }{t} \right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \end{aligned}$$

    Hence, we get

    $$\begin{aligned} \text {LSVNPWA}(\beta _{1}^{\lambda }\oplus \beta ,\beta _{2}^{\lambda }\oplus \beta ,\ldots ,\beta _{n}^{\lambda }\oplus \beta )\ge \text {LSVNPWA}(\lambda \beta _{1}\otimes \beta ,\lambda \beta _{2}\otimes \beta ,\ldots ,\lambda \beta _{n}\otimes \beta ) \end{aligned}$$

\(\square\)

Proof of the Theorem 17

Proof

We will prove part (i) and remaining parts are similar.

  1. (i)

    For any \(\beta _i= \langle s_{\theta _i}, s_{\psi _i}, s_{\sigma _i} \rangle\) and \(\beta = \langle s_{\theta }, s_{\psi }, s_{\sigma } \rangle ,\) we have

    $$\begin{aligned}&\text {LSVNPWA}(\lambda \beta _{1}\otimes \beta ,\lambda \beta _{2}\otimes \beta ,\ldots ,\lambda \beta _{n}\otimes \beta )\\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\left( 1-\left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\theta }{t}\right) \right) ^{{\frac{T_i}{\sum _{i=1}^n T_i}}}\right) }, \right. \\&\qquad \;s_{t\left( \prod \limits _{i=1}^{n} \left( 1-\left( 1-\left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\psi }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }, \\&\left. \qquad \;s_{t \left( \prod \limits _{i=1}^{n} \left( 1-\left( 1-\left( \tfrac{\sigma _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\sigma }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \right\rangle ;\\&\text {LSVNPWA}(\lambda \beta _{1},\lambda \beta _{2},\ldots ,\lambda \beta _{n})\\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }, s_{t \left( \prod \limits _{i=1}^{n}\left( \left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }, \right. \\&\left. \qquad \;s_{t \left( \prod \limits _{i=1}^{n}\left( \left( \tfrac{\sigma _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }\right\rangle ;\\ \text {and }&\text {LSVNPWA}(\lambda \beta _{1}\oplus \beta ,\lambda \beta _{2}\oplus \beta ,\ldots ,\lambda \beta _{n}\oplus \beta )\\&\quad =\left\langle s_{t\left( 1-\prod \limits _{i=1}^{n} \left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\left( 1-\tfrac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }, s_{t \left( \prod \limits _{i=1}^{n} \left( \left( \tfrac{\psi _i}{t}\right) ^{\lambda } \left( \tfrac{\psi }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) },\right. \\&\left. \qquad \;s_{t\left( \prod \limits _{i=1}^{n} \left( \left( \tfrac{\sigma _i}{t}\right) ^{\lambda } \left( \tfrac{\sigma }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }\right\rangle \\ \end{aligned}$$

    We shall prove this part in two steps:

    • Step 1 We first prove \(\text {LSVNPWA}(\lambda \beta _{1}\otimes \beta ,\lambda \beta _{2}\otimes \beta ,\ldots , \lambda \beta _{n}\otimes \beta )\le \text {LSVNPWA}(\lambda \beta _{1},\lambda \beta _{2},\ldots ,\lambda \beta _{n})\).

      Since, \(0 \le 1-\left( 1-{\theta _{i}}/{t}\right) ^{\lambda }\le 1, 0 \le \left( {\theta }/{t}\right) \le 1\), then based on the Lemma 4, we have

      $$\begin{aligned}&1-\big (1-\big (1-{\theta _{i}}/{t}\big )^{\lambda }\big )\big (1-{\theta }/{t}\big ) \ge \big (1-{\theta _{i}}/{t}\big )^{\lambda } \nonumber \\&\quad \Rightarrow \prod \limits _{i=1}^{n}\left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}} \ge \prod \limits _{i=1}^{n}\left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}} \nonumber \\&\quad \Rightarrow t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\left( 1-\left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) \nonumber \\&\qquad \le t\left( 1-\prod \limits _{i=1}^{n} \left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) \nonumber \\&\quad \Rightarrow s_{t\left( 1-\prod \limits _{i=1}^{n} \left( 1-\left( 1-\left( 1-\frac{\theta _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \le s_{t\left( 1-\prod \limits _{i=1}^{n}\left( \left( 1-\frac{\theta _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \end{aligned}$$
      (22)

      Now, we have

      $$\begin{aligned}&1-\left( 1-\left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\psi }{t}\right) \ge \left( \tfrac{\psi _i}{t}\right) ^{\lambda }\nonumber \\&\quad \Rightarrow t\prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\psi }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\ge t \prod \limits _{i=1}^{n} \left( \left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}} \nonumber \\&\quad \Rightarrow s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) \left( 1-\tfrac{\psi }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \ge s_{t\left( \prod \limits _{i=1}^{n} \left( \left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \nonumber \\ \end{aligned}$$
      (23)

      Similarly,

      $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n}\left( 1-\left( 1-\left( \frac{\sigma _i}{t}\right) ^{\lambda }\right) \left( 1-\frac{\sigma }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }\ge s_{t \left( \prod \limits _{i=1}^{n} \left( \left( \frac{\sigma _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \nonumber \\ \end{aligned}$$
      (24)

      Therefore, from Eqs. (22), (23) and (24), we get \(\text {LSVNPWA}(\lambda \beta _{1}\otimes \beta ,\lambda \beta _{2}\otimes \beta ,\ldots ,\lambda \beta _{n}\otimes \beta )\le \text {LSVNPWA}(\lambda \beta _{1},\lambda \beta _{2},\ldots ,\lambda \beta _{n})\)

    • Step 2 Now, we prove \(\text {LSVNPWA}(\lambda \beta _{1},\lambda \beta _{2},\ldots ,\lambda \beta _{n})\le \text {LSVNPWA}(\lambda \beta _{1}\oplus \beta ,\lambda \beta _{2}\oplus \beta ,\ldots ,\lambda \beta _{n}\oplus \beta )\). Since, \(0\le \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\le 1\), \(0\le \left( 1-\tfrac{\theta }{t}\right) \le 1\), therefore we have

      $$\begin{aligned}&\left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\left( 1-\tfrac{\theta }{t}\right) \le \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\nonumber \\&\quad \Rightarrow \prod \limits _{i=1}^{n}\left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda }\left( 1-\tfrac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\le \prod \limits _{i=1}^{n}\left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda {\frac{T_i}{\sum _{i=1}^n T_i}}}\nonumber \\&\quad \Rightarrow t\left( 1- \prod \limits _{i=1}^{n} \left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda } \left( 1-\tfrac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) \ge t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda {\frac{T_i}{\sum _{i=1}^n T_i}}}\right) \nonumber \\&\quad \Rightarrow s_{t\left( 1- \prod \limits _{i=1}^{n}\left( \left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda } \left( 1-\tfrac{\theta }{t}\right) \right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) }\ge s_{t\left( 1-\prod \limits _{i=1}^{n}\left( 1-\tfrac{\theta _i}{t}\right) ^{\lambda {\frac{T_i}{\sum _{i=1}^n T_i}}}\right) } \end{aligned}$$
      (25)

      Similarly, we get

      $$\begin{aligned}&s_{t\left( \prod \limits _{i=1}^{n}\left( \tfrac{\psi _i}{t}\right) ^{\lambda }\left( \tfrac{\psi }{t}\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \le s_{t\left( \prod \limits _{i=1}^{n} \left( \left( \tfrac{\psi _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \end{aligned}$$
      (26)

      and

      $$\begin{aligned} s_{t\left( \prod \limits _{i=1}^{n} \left( \tfrac{\sigma _i}{t}\right) ^{\lambda } \left( \tfrac{\sigma }{t}\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \le s_{t \left( \prod \limits _{i=1}^{n} \left( \left( \tfrac{\sigma _i}{t}\right) ^{\lambda }\right) ^{\frac{T_i}{\sum _{i=1}^n T_i}}\right) } \end{aligned}$$
      (27)

      Therefore, from Eqs. (25), (26) and (27), we get \(\text {LSVNPWA}(\lambda \beta _{1},\lambda \beta _{2},\ldots ,\lambda \beta _{n})\le \text {LSVNPWA}(\lambda \beta _{1}\oplus \beta ,\lambda \beta _{2}\oplus \beta ,\ldots ,\lambda \beta _{n}\oplus \beta )\)

    Hence, based on these steps, we get the result.

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Nancy Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J Ambient Intell Human Comput 9, 1975–1997 (2018). https://doi.org/10.1007/s12652-018-0723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0723-5

Keywords

Navigation