Skip to main content
Log in

Relaxation algorithm-based PTV with dual calculation method and its application in addressing particle saltation

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

This paper proposes a dual calculation method (DCM) that in velocity fields obtained from particle tracking velocimetry detects spurious velocity vectors. The synthetic images were used to test the performance of the DCM. By adding random erasing to the genuine matching data, the influence of noise effect was simulated and analyzed. A comparison with the minimum net-flux method indicates that the DCM is more effective in identifying erroneous vectors as particles having no genuine candidates are more readily identified, thereby, ensuring strong consistent match. The DCM is also found to be more effective in addressing particle saltation, based on the accurately abstracted trajectories, the kinetic parameters of the sand grains are calculated.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluid 39(2):159–169

    Article  Google Scholar 

  • Andreotti B, Claudin P, Douady S (2002) Selection of dune shapes and velocities—Part 1: dynamics of sand, wind and barchans. Eur Phy J B 28(3):321–339

    Article  Google Scholar 

  • Baek SJ, Lee SJ (1996) A new two-frame particle tracking algorithm using match probability. Exp Fluid 22(1):23–32

    Article  Google Scholar 

  • Baek SJ, Lee SJ (1998) Development of 2-frame PTV systems and its application in a channel flow. Trans KSME 22(6):874–887 (In Korean)

    Google Scholar 

  • Bagnold RA (1954) The physics of blown sand and desert dunes. Dover Publications Inc, New York

    Google Scholar 

  • Barnard ST, Thompson WB (1980) DISPARITY ANALYSIS OF IMAGES. IEEE Trans Pattern Anal Mach Intell 2(4):333–340

    Article  Google Scholar 

  • Brevis W, Nino Y, Jirka GH (2011) Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry. Exp Fluid 50(1):135–147. doi:10.1007/s00348-010-0907-z

    Article  Google Scholar 

  • Cardwell ND, Vlachos PP, Thole KA (2011) A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows. Meas Sci Technol 22(10). doi:10.1088/0957-0233/22/10/105406

  • Doh DH, Kim DH, Cho KR, Cho YB, Lee WJ, Saga T, Kobayashi T (2002) Development of genetic algorithm based 3D-PTV technique. J Vis 5(3):243–254

    Article  Google Scholar 

  • Hartmann J, Kohler J, Stolz W, Flogel H (1996) Evaluation of unsteady flow fields using cross-correlation in image sequences. Exp Fluid 20:210–217

    Article  Google Scholar 

  • Hassan YA, Canaan RE (1991) full-field bubbly flow velocity-measurements using a multiframe particle tracking technique. Exp Fluid 12(1–2):49–60

    Google Scholar 

  • Liang DF, Jiang CB, Li YL (2003) Cellular neural network to detect spurious vectors in PIV data. Exp Fluid 34(1):52–62. doi:10.1007/s00348-002-0530-8

    Article  Google Scholar 

  • Mikheev AV, Zubtsov VM (2008) Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm. Measurement Science & Technology 19 (8)

  • Nalpanis P, Hunt JCR, Barrett CF (1993) Saltating particles over flat beds. J Fluid Mech 251:661–685. doi:10.1017/s0022112093003568

    Article  Google Scholar 

  • Ohmi K, Li HY (2000) Particle-tracking velocimetry with new algorithm. Meas Sci Technol 11(6):603–616. doi:10.1088/0957-0233/11/6/303

    Article  Google Scholar 

  • Ohmi K, Panday SP (2009) Particle tracking velocimetry using the genetic algorithm. J Vis 12(3):217–232

    Article  Google Scholar 

  • Ohmi K, Panday SP, Sapkota A (2010) Particle tracking velocimetry with an ant colony optimization algorithm. Exp Fluids 48(4):589–605. doi:10.1007/s00348-009-0815-2

    Article  Google Scholar 

  • Okamoto K, Nishio S, Saga T, Kobayashi T (2000a) Evaluation of the 3D-PIV standard images (PIV-STD project). J Vis 3(2):115–124

    Article  Google Scholar 

  • Okamoto K, Nishio S, Saga T, Kobayashi T (2000b) Standard images for particle-image velocimetry. Meas Sci Technol 11(6):685–691

    Article  Google Scholar 

  • Pereira F, Stuer H, Graff EC, Gharib M (2006) Two-frame 3D particle tracking. Meas Sci Technol 17(7):1680–1692. doi:10.1088/0957-0233/17/7/006

    Article  Google Scholar 

  • Raffel ME, WC T, WS JK (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Ruhnau P, Guetter C, Putze T, Schnorr C (2005) A variational approach for particle tracking velocimetry. Meas Sci Technol 16(7):1449–1458

    Article  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 6:16

    Google Scholar 

  • Sheng J, Meng H (1998) A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry. Exp Fluids 25(5–6):461–473

    Article  Google Scholar 

  • Song X, Yamamoto F, Iguchi M, Murai Y (1999) A new tracking algorithm of PIV and removal of spurious vectors using delaunay tessellation. Exp Fluids 26(4):371–380

    Article  Google Scholar 

  • Sun JH, Yates DA, Winterbone DE (1996) Measurement of the flow field in a diesel engine combustion chamber after combustion by cross-correlation of high-speed photographs. Exp Fluid 20(5):335–345

    Article  Google Scholar 

  • Uemura T, Yamamoto F, Ohmi K (1989) A high-speed algorithm of image analysis for real time measurement of a two-dimensional velocity distribution. Flow Visualization ASME FED 85:129–134

  • Wang D, Wang Y, Yang B, Zhang W (2008) Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera. Sedimentology 55(2):461–470

    Article  Google Scholar 

  • Wang Y, Wang D, Wang L, Zhang Y (2009) Measurement of sand creep on a flat sand bed using a high-speed digital camera. Sedimentology 56(6):1705–1712

    Article  Google Scholar 

  • Waston DF (1981) Computing the n-dimensional delaunay tessellation with application to Voronoi polytopes. Comput J 24(2):167–172

    Article  MathSciNet  Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluid 16(3–4):236–247

    Google Scholar 

  • White BR, Schulz JC (1977) Magnus effect in saltation. J Fluid Mech 81(JUL13):497–512

    Article  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10(4):181–193

    Article  Google Scholar 

  • Willetts BB, Rice MA (1986) Collisions in aeolian saltation. Acta Mech 63(1–4):255–265

    Article  Google Scholar 

  • Zhang W, Kang J-H, Lee S-J (2007) Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer. Geomorphology 86(3–4):320–331

    Article  Google Scholar 

  • Zhang W, Wang Y, Lee SJ (2008) Simultaneous PIV and PTV measurements of wind and sand particle velocities. Exp Fluids 45(2):241–256

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The support provided by the National Natural Science Foundation of China (NSFC 11272252, 11022153) is gratefully acknowledged. We also thank Professor Kazuo Ohmi, Osaka Sangyo University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, P., Wang, Y., Zhang, Y. et al. Relaxation algorithm-based PTV with dual calculation method and its application in addressing particle saltation. J Vis 18, 71–81 (2015). https://doi.org/10.1007/s12650-014-0228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-014-0228-z

Keywords

Navigation