Skip to main content

Advertisement

Log in

Bioelectricity Generation Using Sweet Lemon Peels as Anolyte and Cow Urine as Catholyte in a Yeast-Based Microbial Fuel Cell

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Microbial fuel cell (MFC) is a budding technology for organic waste treatment with simultaneous bioelectricity generation. The present investigation explores the potential of pretreated sweet lime peel slurry as an anolyte with yeast and bacteria anode biocatalyst for bioenergy generation in MFCs. Sterilised cow urine was used as catholyte and Chlorella pyrenoidosa strain as cathode biocatalyst. Three H-shaped dual-chamber MFCs were fabricated using two plastic containers operating with no inoculum, Saccharomyces cerevisiae as only inoculum and co-culture of Saccharomyces cerevisiae with isolated cellulolytic bacteria, respectively, in the anode chamber. The anode was prepared using a rectangular stainless-steel mesh; the cathode was a cylindrical graphite rod. The maximum open-circuit voltages achieved by co-culture of bacteria and S. cerevisiae were 792.33 ± 1.53 mV and 481.33 ± 3.51 mV, respectively. The maximum power densities in these two MFCs were found to be 22.20 ± 1.28 mW/m2 (210.66 ± 6.11 mA/m2) and 204.80 ± 1.28 mW/m2 (640.0 ± 2.0 mA/m2) correspondingly. Results noticeably disclosed that microorganisms consumed the carbon source available in sweet lime peel. Thus, the sweet lime peel can be an inexpensive alternative for operating MFCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CB:

Cellulolytic bacteria

HPTCL:

High pressure and temperature pretreated sweet lime peel slurry

MFC:

Microbial fuel cell

OCV:

Open circuit voltage

PCL:

Pretreated peels

PCLY:

Pretreated peel with yeast

PCLYB:

Pretreated peel with yeast and bacteria

References

  1. Verma, M., Mishra, V.: Recent trends in upgrading the performance of yeast as electrode biocatalyst in microbial fuel cells. Chemosphere 284, 131383 (2021)

    Article  Google Scholar 

  2. Verma, M., Mishra, V.: Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber S. cerevisiae-based microbial fuel cell. Biomass. Bioenergy. 168, 106677 (2023). https://doi.org/10.1016/j.biombioe.2022.106677

    Article  Google Scholar 

  3. Verma, M., Verma, M.K., Singh, V., Singh, J., Singh, V., Mishra, V.: Advancements in applicability of microbial fuel cell for energy recovery from human waste. Bioresour. Technol. Reports. 17, 100978 (2022)

    Article  Google Scholar 

  4. Chae, K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y., Kim, I.S.: Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100, 3518–3525 (2009). https://doi.org/10.1016/j.biortech.2009.02.065

    Article  Google Scholar 

  5. Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2010). https://doi.org/10.1016/j.biortech.2009.10.017

    Article  Google Scholar 

  6. Bai, X., Lin, T., Liang, N., Li, B.-Z., Song, H., Yuan, Y.-J.: Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity. Biochem. Eng. J. 172, 108052 (2021). https://doi.org/10.1016/j.bej.2021.108052

    Article  Google Scholar 

  7. Ramanavicius, S., Ramanavicius, A.: Progress and insights in the application of mxenes as new 2d nano-materials suitable for biosensors and biofuel cell design. Int. J. Mol. Sci. 21, 1–17 (2020). https://doi.org/10.3390/ijms21239224

    Article  Google Scholar 

  8. Ramanavicius, S., Ramanavicius, A.: Charge transfer and biocompatibility aspects in conducting polymer-based enzymatic biosensors and biofuel cells. Nanomaterials 11, 1–22 (2021). https://doi.org/10.3390/nano11020371

    Article  Google Scholar 

  9. Zinovicius, A., Rozene, J., Merkelis, T., Bruzaitė, I., Ramanavicius, A., Morkvenaite-Vilkonciene, I.: Evaluation of a Yeast-polypyrrole biocomposite used in microbial fuel cells. Sensors. (2022). https://doi.org/10.3390/s22010327

    Article  Google Scholar 

  10. Andriukonis, E., Reinikovaite, V., Ramanavicius, A.: Comparative study of polydopamine and polypyrrole modified yeast cells applied in biofuel cell design. Sustain. Energy Fuels. 6, 4209–4217 (2022)

    Article  Google Scholar 

  11. Ali, N., Anam, M., Yousaf, S., Maleeha, S., Bangash, Z.: Characterization of the electric current generation potential of the Pseudomonas aeruginosa using glucose fructose and sucrose in double chamber microbial fuel cell. Iran. J. Biotechnol. 15, 216–223 (2017). https://doi.org/10.15171/ijb.1608

    Article  Google Scholar 

  12. Toczyłowska-Mamińska, R., Szymona, K., Król, P., Gliniewicz, K., Pielech-Przybylska, K., Kloch, M., Logan, B.E.: Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 11, 124 (2018)

    Article  Google Scholar 

  13. Ebadinezhad, B., Ebrahimi, S., Shokrkar, H.: Evaluation of microbial fuel cell performance utilizing sequential batch feeding of different substrates. J. Electroanal. Chem. 836, 149–157 (2019). https://doi.org/10.1016/j.jelechem.2019.02.004

    Article  Google Scholar 

  14. Verma, M., Mishra, V.: Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation. In: Srivastava, N., Malik, M.A. (eds.) Food Waste to Green Fuel: Trend & Development, pp. 189–211. Springer Nature Singapore, Singapore (2022)

    Chapter  Google Scholar 

  15. Oh, S., Logan, B.E.: Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39, 4673–4682 (2005)

    Article  Google Scholar 

  16. Lu, N., Zhou, S., Zhuang, L., Zhang, J., Ni, J.: Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J. 43, 246–251 (2009)

    Article  Google Scholar 

  17. Min, B., Kim, J., Oh, S., Regan, J.M., Logan, B.E.: Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39, 4961–4968 (2005)

    Article  Google Scholar 

  18. Heilmann, J., Logan, B.E.: Production of electricity from proteins using a microbial fuel cell. Water Environ. Res. 78, 531–537 (2006)

    Article  Google Scholar 

  19. Miran, W., Nawaz, M., Jang, J., Lee, D.S.: Sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int. Biodeterior. Biodegradation. 106, 75–79 (2016)

    Article  Google Scholar 

  20. Zafar, H., Peleato, N., Roberts, D.: A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells. Environ. Technol. Rev. 11, 72–90 (2022)

    Article  Google Scholar 

  21. Sanjay, S., Udayashankara, T.H.: Dairy wastewater treatment with bio-electricity generation using dual chambered membrane-less microbial fuel cell. Mater. Today Proc. 35, 308–311 (2021)

    Article  Google Scholar 

  22. Zuo, Y., Maness, P.-C., Logan, B.E.: Electricity production from steam-exploded corn stover biomass. Energy Fuels. 20, 1716–1721 (2006)

    Article  Google Scholar 

  23. Priya, A.D., Setty, Y.P.: Cashew apple juice as substrate for microbial fuel cell. Fuel. 246, 75–78 (2019)

    Article  Google Scholar 

  24. Miran, W., Nawaz, M., Jang, J., Lee, D.S.: Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Sci. Total Environ. 547, 197–205 (2016)

    Article  Google Scholar 

  25. Ganesh, K.S., Sridhar, A., Vishali, S.: Utilization of fruit and vegetable waste to produce value-added products: conventional utilization and emerging opportunities-a review. Chemosphere 287, 132221 (2022)

    Article  Google Scholar 

  26. Shah, A., Masoodi, F.A., Gani, A., Noor, N.: Mosambi (Sweet Lime). In: Nayik, G.A., Gull, A. (eds.) Antioxidants in Fruits: Properties and Health Benefits, pp. 125–133. Springer, Singapore (2020)

    Google Scholar 

  27. Younis, K., Islam, R.U., Jahan, K., Yousuf, B., Ray, A.: Effect of addition of mosambi (Citrus limetta) peel powder on textural and sensory properties of papaya jam. Cogent Food Agric. 1, 1023675 (2015). https://doi.org/10.1080/23311932.2015.1023675

    Article  Google Scholar 

  28. Hasan, W., Ahmed, H., Salim, K.M.: Generation of Electricity Using Cow Urine. 9, 1465–1471 (2014)

    Google Scholar 

  29. Devasena, M., & Sangeetha, V.: Cow urine: Potential resource for sustainable agriculture. In Emerging Issues in Climate Smart Livestock Production (pp. 247−262). Academic Press (2022)

  30. Verma, M., Mishra, V.: An introduction to algal biofuels. In: Microbial Strategies for Techno-economic Biofuel Production, pp. 1–34. Springer, Singapore (2020)

    Google Scholar 

  31. Prabhu, M., Mutnuri, S.: Cow urine as a potential source for struvite production. Int. J. Recycl. Org. Waste Agric. 3, 1–12 (2014)

    Article  Google Scholar 

  32. Hamoda, M.F., Al-Awadi, S.M.: Wastewater management in a dairy farm. Water Sci. Technol. 32, 1–11 (1995). https://doi.org/10.1016/0273-1223(96)00111-4

    Article  Google Scholar 

  33. Singh, V., Mishra, V.: Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem. Eng. J. 174, 108129 (2021). https://doi.org/10.1016/j.bej.2021.108129

    Article  Google Scholar 

  34. Žalnėravičius, R., Klimas, V., Naujokaitis, A., Jagminas, A., Ramanavičius, A.: Development of biofuel cell based on anode modified by glucose oxidase, Spirulina platensis-based lysate and multi-walled carbon nanotubes. Electrochim. Acta. 426, 140689 (2022). https://doi.org/10.1016/j.electacta.2022.140689

    Article  Google Scholar 

  35. Pandit, S., Das, D.: Role of microalgae in microbial fuel cell. In: Algal Biorefinery: An Integrated Approach, pp. 375–399. Springer, Cham (2015)

    Chapter  Google Scholar 

  36. ASTM International.: ASTM D317-12: Standard Test Methods for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International (2012)

  37. ASTM International.: Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International (2003)

  38. Standard, A. S. T. M.: Test method for volatile matter in the analysis sample of coal and coke. Search in (2013)

  39. Standard, A. S. T. M.: Standard practice for proximate analysis of coal and coke (2013)

  40. American Public Health Association.: Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association (1926)

  41. Gupta, P., Samant, K., Sahu, A.: Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 1–5 (2012)

    Article  Google Scholar 

  42. Hendricks, C.W., Doyle, J.D., Hugley, B.: A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 61, 2016–2019 (1995)

    Article  Google Scholar 

  43. Lisdiyanti, P., Suyanto, E., Gusmawati, N.F., Rahayu, W.: Isolation and characterization of cellulase produced by cellulolytic bacteria from peat soil of Ogan Komering Ilir South Sumatera. Int. J. Environ. bioenergy. 3, 145–153 (2012)

    Google Scholar 

  44. de Manta, F.S.N., Leal-Calvo, T., Moreira, S.J.M., Marques, B.L.C., Ribeiro-Alves, M., Rosa, P.S., Nery, J.A.C., de Rampazzo, R.C.P., Costa, A.D.T., Krieger, M.A.: Ultra-sensitive detection of Mycobacterium leprae: DNA extraction and PCR assays. PLoS Negl. Trop. Dis. 14, e0008325 (2020)

    Article  Google Scholar 

  45. Minas, K., McEwan, N.R., Newbold, C.J., Scott, K.P.: Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol. Lett. 325, 162–169 (2011)

    Article  Google Scholar 

  46. Fan, L.P., Li, J.J.: Overviews on internal resistance and its detection of microbial fuel cells. Int. J. Circuits Syst. Signal Process. 10, 316–320 (2016)

    Google Scholar 

  47. Rashid, T., Sher, F., Hazafa, A., Hashmi, R.Q., Zafar, A., Rasheed, T., Hussain, S.: Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J. Environ. Chem. Eng. 9, 104502 (2021). https://doi.org/10.1016/j.jece.2020.104502

    Article  Google Scholar 

  48. Solomon, J., Kugarajah, V., Ganesan, P., Dharmalingam, S.: Enhancing power generation by maintaining operating temperature using phase change material for microbial fuel cell application. J. Environ. Chem. Eng. 10, 107057 (2022). https://doi.org/10.1016/j.jece.2021.107057

    Article  Google Scholar 

  49. Toczyłowska-Mamińska, R., Szymona, K., Madej, H., Wong, W.Z., Bala, A., Brutkowski, W., Krajewski, K., San H’ng, P., Mamiński, M.: Cellulolytic and electrogenic activity of enterobacter cloacae in mediatorless microbial fuel cell. Appl. Energy. 160, 88–93 (2015)

    Article  Google Scholar 

  50. Vasan, P.T., Piriya, P.S., Prabhu, D.I.G., Vennison, S.J.: Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour. Technol. 102, 2585–2589 (2011)

    Article  Google Scholar 

  51. Lokapirnasari, W.P., Nazar, D.S., Nurhajati, T., Supranianondo, K., Yulianto, A.B.: Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir Indonesia. Vet. world. 8, 367 (2015)

    Article  Google Scholar 

  52. Din, M.I., Iqbal, M., Hussain, Z., Khalid, R.: Bioelectricity generation from waste potatoes using single chambered microbial fuel cell. Energy Sources. Part A Recover Util Environ Eff. (2020). https://doi.org/10.1080/15567036.2020.1797944

    Article  Google Scholar 

  53. Yaqoob, A.A., Mohamad Ibrahim, M.N., Umar, K., Bhawani, S.A., Khan, A., Asiri, A.M., Khan, M.R., Azam, M., AlAmmari, A.M.: Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial. Fuel Cells 13, 1–135 (2021)

    Google Scholar 

  54. Ng, F.L., Phang, S.M., Thong, C.H., Periasamy, V., Pindah, J., Yunus, K., Fisher, A.C.: Integration of bioelectricity generation from algal biophotovoltaic (BPV) devices with remediation of palm oil mill effluent (POME) as substrate for algal growth. Environ. Technol. Innov. 21, 101280 (2021). https://doi.org/10.1016/j.eti.2020.101280

    Article  Google Scholar 

  55. Rismani-Yazdi, H., Christy, A.D., Carver, S.M., Yu, Z., Dehority, B.A., Tuovinen, O.H.: Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresour. Technol. 102, 278–283 (2011)

    Article  Google Scholar 

  56. Lalitha Priya, R., Ramachandran, T., Suneesh, P.V.: Fabrication and characterization of high power dual chamber E coli microbial fuel cell. IOP Conf. Ser. Mater. Sci. Eng. 12, 1 (2016). https://doi.org/10.1088/1757-899X/149/1/012215

    Article  Google Scholar 

  57. Venkata Mohan, S., Mohanakrishna, G., Sarma, P.N.: Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour. Technol. 101, 970–976 (2010). https://doi.org/10.1016/j.biortech.2009.09.005

    Article  Google Scholar 

  58. Choi, S.: Microscale microbial fuel cells: advances and challenges. Biosens. Bioelectron. 69, 8–25 (2015)

    Article  Google Scholar 

  59. Rojas-Flores, S., Benites, S.M., De La Cruz-Noriega, M., Cabanillas-Chirinos, L., Valdiviezo-Dominguez, F., Álvarez, M.A.Q., Vega-Ybañez, V., Angelats-Silva, L.: Bioelectricity production from blueberry waste. Processes. (2021). https://doi.org/10.3390/pr9081301

    Article  Google Scholar 

  60. Mohd Zaini Makhtar, M., Tajarudin, H.A.: Electricity generation using membrane-less microbial fuel cell powered by sludge supplemented with lignocellulosic waste. Int. J. Energy Res. 44, 3260–3265 (2020). https://doi.org/10.1002/er.5151

    Article  Google Scholar 

  61. Kalagbor Ihesinachi, A., Akpotayire Stephen, I.: Electricity generation from waste tropical fruits—watermelon (Citrullus lanatus) and Paw-paw (Carica papaya) using single chamber microbial fuel cells. Int. J. Energy Inf. Commun. 11, 11–20 (2020). https://doi.org/10.21742/ijeic.2020.11.2.02

    Article  Google Scholar 

  62. Manohar, A.K., Mansfeld, F.: The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim. Acta. 54, 1664–1670 (2009)

    Article  Google Scholar 

  63. Mohan, S.V., Raghavulu, S.V., Sarma, P.N.: Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosens. Bioelectron. 24, 41–47 (2008)

    Article  Google Scholar 

  64. Ramasamy, R.P., Ren, Z., Mench, M.M., Regan, J.M.: Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol. Bioeng. 101, 101–108 (2008)

    Article  Google Scholar 

  65. Kumari, P., Varma, A.K., Shankar, R., Thakur, L.S., Mondal, P.: Phycoremediation of wastewater by Chlorella pyrenoidosa and utilization of its biomass for biogas production. J. Environ. Chem. Eng. 9, 104974 (2021). https://doi.org/10.1016/j.jece.2020.104974

    Article  Google Scholar 

  66. Gajda, I., Greenman, J., Melhuish, C., Ieropoulos, I.: Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenerg. 82, 87–93 (2015). https://doi.org/10.1016/j.biombioe.2015.05.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors of the manuscript are thankful to the Indian Institute of Technology (BHU) Varanasi, Varanasi, for extending their technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

MV has conducted the experiments and prepared the manuscript. VM is corresponding author of manuscript.

Corresponding author

Correspondence to Vishal Mishra.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Mishra, V. Bioelectricity Generation Using Sweet Lemon Peels as Anolyte and Cow Urine as Catholyte in a Yeast-Based Microbial Fuel Cell. Waste Biomass Valor 14, 2643–2657 (2023). https://doi.org/10.1007/s12649-023-02050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02050-6

Keywords

Navigation