Skip to main content

Advertisement

Log in

Lignin Phenol Formaldehyde Resins Synthesised Using South African Spent Pulping Liquor

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The current study investigated to which extent phenol could be replaced by lignins to produce lignin phenol formaldehyde (LPF) resins, utilising soda lignin and sodium lignosulphonate as by-products from the South African pulping industry.

Method

The lignins were characterised and soda lignin indicated the highest reactivity. It was therefore utilised to produce LPF resins at 60%, 80%, and 100% phenol substitution, using central composite designs to maximise the adhesive strength. A one-pot method allowing direct transition from phenolation to resin synthesis was used for the first time with a pulping lignin at 60% and 80% substitution.

Results

Plywood made with LPF60, LPF80, and LPF100 resins attained their highest shear strengths of 0.786, 1.09, and 0.987 MPa, respectively, which adhered to the GB/T 14,732–2013 standard (≥ 0.7 MPa). A substitution level of 68% produced the highest shear strength of 1.11 MPa. High-density particleboard made with this LPF68 resin gave a MOR and MOE of 40 and 3209 MPa, respectively, adhering to the ANSI A208.1 requirements. Thickness swelling and water absorption was 13.5% and 37.2%, respectively.

Conclusion

The soda-lignin isolated by precipitation from sugarcane bagasse pulping liquor is the first industrial lignin shown to produce LPF100 resins adhering to standard requirements, without modification or additives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The resulting data from the study are available from the corresponding author upon request.

References

  1. Khan, M.A., Ashraf, S.M., Malhotra, V.P.: Eucalyptus bark lignin substituted phenol formaldehyde adhesives: a study on optimization of reaction parameters and characterization. J. Appl. Polym. Sci. 92, 3514–3523 (2004). https://doi.org/10.1002/app.20374

    Article  Google Scholar 

  2. Çetin, N.S., Özmen, N.: Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modified resins. Int. J. Adhes. Adhes. 22, 477–480 (2002). https://doi.org/10.1016/S0143-7496(02)00058-1

    Article  Google Scholar 

  3. Klašnja, B., Kopitović, S.: Lignin-Phenol-Formaldehyde resins as adhesives in the production of plywood. Holz. Als. Roh. Und. Werkst. 50, 282–285 (1992). https://doi.org/10.1007/BF02615352

    Article  Google Scholar 

  4. Tang, Q., Qian, Y., Yang, D., et al.: Lignin-based nanoparticles: A review on their preparations and applications. Polymers (Basel) 12, 1–22 (2020). https://doi.org/10.3390/polym12112471

    Article  Google Scholar 

  5. Tejado, A., Peña, C., Labidi, J., et al.: Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour. Technol. 98, 1655–1663 (2007). https://doi.org/10.1016/j.biortech.2006.05.042

    Article  Google Scholar 

  6. El Mansouri, N.E., Farriol, X., Salvadó, J.: Structural modification and characterization of lignosulfonate by a reaction in an alkaline medium for its incorporation into phenolic resins. J. Appl. Polym. Sci. 102, 3286–3292 (2006). https://doi.org/10.1002/app.24744

    Article  Google Scholar 

  7. Hon, D.N.S.: Chemical modification of lignocellulosic materials. CRC Press (1996)

    Google Scholar 

  8. Hu, L., Pan, H., Zhou, Y., Zhang, M.: Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources 6, 3515–3525 (2011)

    Article  Google Scholar 

  9. Zhao, M., Jing, J., Zhu, Y., et al.: Preparation and performance of lignin-phenol-formaldehyde adhesives. Int. J. Adhes. Adhes. 64, 163–167 (2016). https://doi.org/10.1016/j.ijadhadh.2015.10.010

    Article  Google Scholar 

  10. Ghorbani, M., Konnerth, J., van Herwijnen, H.W.G., et al.: Commercial lignosulfonates from different sulfite processes as partial phenol replacement in PF resole resins. J. Appl. Polym. Sci. 135, 1–11 (2018). https://doi.org/10.1002/app.45893

    Article  Google Scholar 

  11. Thébault, M., Kutuzova, L., Jury, S., et al.: Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: Molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles. J. Renew. Mater. 8, 603–630 (2020)

    Article  Google Scholar 

  12. Alonso, M.V., Oliet, M., Rodríguez, F., et al.: Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresour. Technol. 96, 1013–1018 (2005). https://doi.org/10.1016/j.biortech.2004.09.009

    Article  Google Scholar 

  13. Karthäuser, J., Biziks, V., Mai, C., Militz, H.: Lignin and lignin-derived compounds for wood applications—a review. Molecules 26, 2533 (2021). https://doi.org/10.3390/molecules26092533

    Article  Google Scholar 

  14. Jiang, X., Liu, J., Du, X., et al.: Phenolation to improve lignin reactivity toward thermosets application. ACS Sustain Chem. Eng. 6, 5504–5512 (2018). https://doi.org/10.1021/acssuschemeng.8b00369

    Article  Google Scholar 

  15. Lee, W., Chang, K.-C., Tseng, I.-M.: Properties of phenol-formaldehyde resins prepared from phenol-liquefied lignin. J. Appl. Polym. Sci. (2011). https://doi.org/10.1002/app.35539

    Article  Google Scholar 

  16. Gan, L., Pan, X.: Phenol-enhanced depolymerization and activation of kraft lignin in alkaline medium. Ind. Eng. Chem. Res. 58, 7794–7800 (2019). https://doi.org/10.1021/acs.iecr.9b01147

    Article  Google Scholar 

  17. Yang, S., Wen, J.-L., Yuan, T.-Q., Sun, R.-C.: Characterization and phenolation of biorefinery technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Adv. 4, 57996–58004 (2014). https://doi.org/10.1039/C4RA09595B

    Article  Google Scholar 

  18. Abdelwahab, N.A., Nassar, M.A.: Preparation, optimisation and characterisation of lignin phenol formaldehyde resin as wood adhesive. Pigment Resin Technol. 40, 169–174 (2011). https://doi.org/10.1108/03699421111130432

    Article  Google Scholar 

  19. Sarkar, S., Adhikari, B.: Lignin-modified phenolic resin: Synthesis optimization, adhesive strength, and thermal stability. J. Adhes. Sci. Technol. 14, 1179–1193 (2000). https://doi.org/10.1163/156856100743167

    Article  Google Scholar 

  20. Zhang, W., Ma, Y., Wang, C., et al.: Preparation and properties of lignin-phenol-formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind. Crops. Prod. 43, 326–333 (2013). https://doi.org/10.1016/j.indcrop.2012.07.037

    Article  Google Scholar 

  21. Ghorbani, M., Liebner, F., van Herwijnen, H.W.G., et al.: Lignin phenol formaldehyde resoles: The impact of lignin type on adhesive properties. BioResources 11, 6727–6741 (2016)

    Article  Google Scholar 

  22. Kalami, S., Chen, N., Borazjani, H., Nejad, M.: Comparative analysis of different lignins as phenol replacement in phenolic adhesive formulations. Ind. Crops Prod. 125, 520–528 (2018). https://doi.org/10.1016/j.indcrop.2018.09.037

    Article  Google Scholar 

  23. Kalami, S., Arefmanesh, M., Master, E., Nejad, M.: Replacing 100% of phenol in phenolic adhesive formulations with lignin. J. Appl. Polym. Sci. 134, 45124 (2017). https://doi.org/10.1002/app.45124

    Article  Google Scholar 

  24. Govender, P., Majeke, B.M., Alawode, A.O., et al.: The use of south african spent pulping liquor to synthesize lignin phenol-formaldehyde resins. For. Prod. J. 70, 503–511 (2020)

    Google Scholar 

  25. Yaakob, M.N.A., Bin Roslan, R., Salim, N., Zakaria, S.: Comparison of phenol-formaldehyde and lignin-formaldehyde resin adhesives for wood application. Mater. Sci. Forum 1025, 307–311 (2021). https://doi.org/10.4028/www.scientific.net/msf.1025.307

    Article  Google Scholar 

  26. García, A., Toledano, A., Serrano, L., et al.: Characterization of lignins obtained by selective precipitation. Sep. Purif. Technol. 68, 193–198 (2009). https://doi.org/10.1016/j.seppur.2009.05.001

    Article  Google Scholar 

  27. Areskogh, D., Li, J., Gellerstedt, G., Henriksson, G.: Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis. Biomacromol 11, 904–910 (2010). https://doi.org/10.1021/bm901258v

    Article  Google Scholar 

  28. Siddiqui, H., Mahmood, N., Yuan, Z., et al.: Sustainable bio-based phenol-formaldehyde resoles using hydrolytically depolymerized kraft lignin. Molecules 22, 1–19 (2017). https://doi.org/10.3390/molecules22111850

    Article  Google Scholar 

  29. Huang, Z., Wang, N., Zhang, Y., et al.: Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Compos. Part A Appl. Sci. Manuf. 43, 114–120 (2012). https://doi.org/10.1016/j.compositesa.2011.09.025

    Article  Google Scholar 

  30. Alawode, A.O.O., Bungu, P.S.S.E.E., Amiandamhen, S.O.O., et al.: Properties and characteristics of novel formaldehyde-free wood adhesives prepared from Irvingia gabonensis and Irvingia wombolu seed kernel extracts. Int. J. Adhes. Adhes. 95, 102423 (2019). https://doi.org/10.1016/j.ijadhadh.2019.102423

    Article  Google Scholar 

  31. Khokarale, S.G., Le-that, T., Mikkola, J.: Carbohydrate free lignin: a dissolution − recovery cycle of sodium lignosulfonate in a switchable ionic liquid system. ACS Sustain Chem. Eng. (2016). https://doi.org/10.1021/acssuschemeng.6b01927

    Article  Google Scholar 

  32. Marques, A.P., Evtuguin, D.V., Magina, S., et al.: Chemical composition of Spent liquors from acidic magnesium-based Sulphite pulping of Eucalyptus globulus. J. Wood Chem. Technol. 29, 322–336 (2009). https://doi.org/10.1080/02773810903207754

    Article  Google Scholar 

  33. Naron, D.R., Collard, F.X., Tyhoda, L., Görgens, J.F.: Characterisation of lignins from different sources by appropriate analytical methods: Introducing thermogravimetric analysis-thermal desorption-gas chromatography–mass spectroscopy. Ind. Crops Prod. 101, 61–74 (2017). https://doi.org/10.1016/j.indcrop.2017.02.041

    Article  Google Scholar 

  34. Doherty, W.O.S., Mousavioun, P., Fellows, C.M.: Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 33, 259–276 (2011). https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  Google Scholar 

  35. Matsushita, Y.: Conversion of technical lignins to functional materials with retained polymeric properties. J. Wood Sci. 61, 230–250 (2015). https://doi.org/10.1007/s10086-015-1470-2

    Article  Google Scholar 

  36. Podschun, J., Stücker, A., Saake, B., Lehnen, R.: Structure-function relationships in the phenolation of lignins from different sources. ACS Sustain Chem. Eng. 3, 2526–2532 (2015). https://doi.org/10.1021/acssuschemeng.5b00705

    Article  Google Scholar 

  37. Taverna, M.E., Felissia, F., Area, M.C., et al.: Hydroxymethylation of technical lignins from South American sources with potential use in phenolic resins. J. Appl. Polym. Sci. 136, 47712 (2019). https://doi.org/10.1002/app.47712

    Article  Google Scholar 

  38. Moubarik, A., Grimi, N., Boussetta, N., Pizzi, A.: Isolation and characterization of lignin from Moroccan sugar cane bagasse: production of lignin-phenol-formaldehyde wood adhesive. Ind. Crops Prod. 45, 296–302 (2013). https://doi.org/10.1016/j.indcrop.2012.12.040

    Article  Google Scholar 

  39. Li, J.J., Wang, W., Zhang, S., et al.: Preparation and characterization of lignin demethylated at atmospheric pressure and its application in fast curing biobased phenolic resins. RSC Adv. 6, 67435–67443 (2016). https://doi.org/10.1039/c6ra11966b

    Article  Google Scholar 

  40. El Mansouri, N.-E., Qiaolong, Y., Huang, F.: Preparation and characterization of phenol-formaldehyde resins modified with alkaline rice straw lignin. BioResources 13, 8061–8075 (2018)

    Article  Google Scholar 

  41. Wen, J.L., Xue, B.L., Xu, F., Sun, R.C.: Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique. Bioenergy Res. 5, 886–903 (2012). https://doi.org/10.1007/s12155-012-9203-5

    Article  Google Scholar 

  42. Yang, H., Xie, Y., Zheng, X., et al.: Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process. Bioresour. Technol. 207, 361–369 (2016). https://doi.org/10.1016/j.biortech.2016.01.123

    Article  Google Scholar 

  43. Wang, G., Chen, H.: Carbohydrate elimination of alkaline-extracted lignin liquor by steam explosion and its methylolation for substitution of phenolic adhesive. Ind. Crops Prod. 53, 93–101 (2014). https://doi.org/10.1016/j.indcrop.2013.12.020

    Article  Google Scholar 

  44. Corderi, S., Renders, T., Servaes, K., et al.: Strategies for the removal of polysaccharides from biorefinery lignins: process optimization and techno economic evaluation. Molecules (2021). https://doi.org/10.3390/molecules26113324

    Article  Google Scholar 

  45. Liu, Y., Chen, W., Xia, Q., et al.: Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. Chemsuschem 10, 1692–1700 (2017). https://doi.org/10.1002/cssc.201601795

    Article  Google Scholar 

  46. Hussin, M.H., Han Zhang, H., Aziz, N.A., et al.: Preparation of environmental friendly phenol-formaldehyde wood adhesive modified with kenaf lignin. Beni-Suef Univ. J. Basic Appl. Sci. 6, 409–418 (2017). https://doi.org/10.1016/j.bjbas.2017.06.004

    Article  Google Scholar 

  47. Boeriu, C.G., Bravo, D., Gosselink, R.J.A., Van Dam, J.E.G.: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20, 205–218 (2004). https://doi.org/10.1016/j.indcrop.2004.04.022

    Article  Google Scholar 

  48. Majeke, B.M., Collard, F.X., Tyhoda, L., Görgens, J.F.: The synergistic application of quinone reductase and lignin peroxidase for the deconstruction of industrial (technical) lignins and analysis of the degraded lignin products. Bioresour. Technol. (2021). https://doi.org/10.1016/j.biortech.2020.124152

    Article  Google Scholar 

  49. Nsaful, F., Collard, F.X., Carrier, M., et al.: Lignocellulose pyrolysis with condensable volatiles quantification by thermogravimetric analysis - Thermal desorption/gas chromatography-mass spectrometry method. J. Anal. Appl. Pyrolysis 116, 86–95 (2015). https://doi.org/10.1016/j.jaap.2015.10.002

    Article  Google Scholar 

  50. Ma, Y., Zhao, X., Chen, X., Wang, Z.: An approach to improve the application of acid-insoluble lignin from rice hull in phenol-formaldehyde resin. Colloids Surfaces A Physicochem. Eng. Asp 377, 284–289 (2011). https://doi.org/10.1016/j.colsurfa.2011.01.006

    Article  Google Scholar 

  51. Ghorbani, M., Konnerth, J., Budjav, E., et al.: Ammoxidized fenton-activated pine kraft lignin accelerates synthesis and curing of resole resins. Polymers (Basel) 9, 43 (2017). https://doi.org/10.3390/polym9020043

    Article  Google Scholar 

  52. Taleb, F., Ammar, M., Mosbah, M., et al.: Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep. 10, 1–13 (2020). https://doi.org/10.1038/s41598-020-68047-6

    Article  Google Scholar 

  53. Yang, S., Zhang, Y., Yuan, T.Q., Sun, R.C.: Lignin-phenol-formaldehyde resin adhesives prepared with biorefinery technical lignins. J. Appl. Polym. Sci. 132, 1–8 (2015). https://doi.org/10.1002/app.42493

    Article  Google Scholar 

  54. Khan, M.A., Ashraf, S.M.: Studies on thermal characterization of lignin: Substituted phenol formaldehyde resin as wood adhesives. J. Therm. Anal Calorim. 89, 993–1000 (2007). https://doi.org/10.1007/s10973-004-6844-4

    Article  Google Scholar 

  55. Alonso, M.V., Oliet, M., Rodríguez, F., et al.: Use of a methylolated softwood ammonium lignosulfonate as partial substitute of phenol in resol resins manufacture. J. Appl. Polym. Sci. 94, 643–650 (2004). https://doi.org/10.1002/app.20887

    Article  Google Scholar 

  56. Pang, B., Yang, S., Fang, W., et al.: Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Ind. Crops Prod. 108, 316–326 (2017). https://doi.org/10.1016/j.indcrop.2017.07.009

    Article  Google Scholar 

  57. Alonso, M.V., Rodrguez, J.J., Oliet, M., et al.: Characterization and structural modification of ammonic lignosulfonate by methylolation. J. Appl. Polym. Sci. 82, 2661–2668 (2001). https://doi.org/10.1002/app.2119

    Article  Google Scholar 

  58. Dunky M (2003) Adhesives in the Wood Industry. In: Handbook of Adhesive Technology, Revised and Expanded. CRC Press, US

  59. Yang, W., Rallini, M., Natali, M., et al.: Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: a comparative study. Mater. Des. 161, 55–63 (2019). https://doi.org/10.1016/j.matdes.2018.11.032

    Article  Google Scholar 

  60. Iwakiri, V.T., Trianoski, R., Razera, D.L., et al.: Production of structural particleboard of mimosa scabrella benth With lignin phenol-formaldehyde resin. Floresta. e Ambient (2019). https://doi.org/10.1590/2179-8087.100617

    Article  Google Scholar 

  61. Stücker, A., Schütt, F., Saake, B., Lehnen, R.: Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: utilization in lignin-phenol-formaldehyde resins. Ind. Crops Prod. 85, 300–308 (2016). https://doi.org/10.1016/j.indcrop.2016.02.062

    Article  Google Scholar 

  62. Mamza, P.A.P., Ezeh, E.C., Gimba, E.C., Arthur, D.E.: Comparative study of phenol formaldehyde and urea formaldehyde particleboards from wood waste for sustainable environment. Int. J. Sci. Technol. Res. 3, 53–56 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Paper Manufacturers Association of South Africa (PAMSA) in conjunction with Sappi Southern Africa Ltd for the scholarship received by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luvuyo Tyhoda.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maree, C., Görgens, J.F. & Tyhoda, L. Lignin Phenol Formaldehyde Resins Synthesised Using South African Spent Pulping Liquor. Waste Biomass Valor 13, 3489–3507 (2022). https://doi.org/10.1007/s12649-022-01756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01756-3

Keywords

Navigation