Skip to main content

Advertisement

Log in

Lignocellulosic Biomass Refining: A Review Promoting a Method to Produce Sustainable Hydrogen, Fuels, and Products

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this review, we highlight our recent developments on the formic acid refining of lignocellulosic biomass and how it can be an innovative way to produce sustainable hydrogen and fuels. There is a worldwide high demand for green energy and green chemistry endeavors to drastically slow down climate change in accord with the COP 21. This review mainly focuses on the deconstruction of the lignocellulosic biomass, using formic acid-based mixtures, into its 3 main components and how they can be the new resources for hydrogen, fuels, and products in the 21st century. We are underlining the natural carbon capture in the form of atmospheric CO2 concentrated into lignocellulosic biomass wastes from the forest and agricultural land sites and the subsequent low energy organic extraction of cellulose, lignin, and hemicelluloses. We illustrate in this review that our dependence on fossil fuels will be greatly reduced, and that atmospheric CO2, sunlight and water will provide safe energy and products for future generations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35(5), 377 (2008)

    Article  Google Scholar 

  2. Dahmen, N., Lewandowski, I., Zibek, S., Weidtmann, A.: Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenergy 11(1), 107 (2019)

    Article  Google Scholar 

  3. Wyman, C.E.: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester (2013)

    Book  Google Scholar 

  4. de Oliveira, R.A., de Barros, R.D.R.O., Ferreira-Leitão, V.S., Freitas, S.P., da Silva Bon, E.P.: Energy supply design for the integrated production of 1G + 2G ethanol from sugarcane. Renew. Energy Focus 35, 171–177 (2020)

    Article  Google Scholar 

  5. Han, J., Luterbacher, J.S., Alonso, D.M., Dumesic, J.A., Maravelias, C.T.: A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis. Biores. Technol. 182, 258–266 (2015)

    Article  Google Scholar 

  6. Dahl, C.F.: Process of manufacturing cellulose from wood. US Patent No. 296935A 1884

  7. Benjamin, C.T.: Improved mode of treating vegetable substances for making paper-pulp. US Patent No. 70485A 1867

  8. Phillips, M.: Benjamin Chew Tilghman, and the origin of the sulfite process for delignification of wood. J. Chem. Educ. 20(9), 444 (1943)

    Article  Google Scholar 

  9. Alfano, S., Berruti, F., Denis, N., Santagostino, A.: The future of second-generation biomass. McKinsey & Company, New York (2016)

    Google Scholar 

  10. Borand, M.N., Karaosmanoğlu, F.: Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J. Renew. Sustain. Energy 10(3), 033104 (2018)

    Article  Google Scholar 

  11. Delmas, M.: Vegetal refining and agrichemistry. Chem. Eng. Technol. 31(5), 792 (2008)

    Article  Google Scholar 

  12. Delmas, M., Avignon, G.: Method for producing paper pulp, lignins, sugars and acetic acid by frantionation of lignocellulosic vegetable material in formic / acetic acid medium. US Patent No. 7,402,224 2008

  13. Delmas, M., Avignon, G.: Method for bleaching paper pulp with organic peracids followed by peroxide and sodium hydroxide. US Patent No. 6,866,749 2005.

  14. Kham, L., Le Bigot, Y., Delmas, M., Avignon, G.: Delignification of wheat straw using a mixture of carboxylic acids and peroxoacids. Ind. Crops Prod. 21(1), 9–15 (2005)

    Article  Google Scholar 

  15. Delmas, M., Benjelloun Mlayah, B., Avignon, G.: Installation for implementing a method for producing paper pulp, lignins and sugars and production method using such an installation. US Patent No. 8,157,964 2012

  16. Banoub, J.H., Delmas, M.: Structural elucidation of the wheat straw lignin polymer by atmospheric pressure chemical ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 38(8), 900 (2003)

    Article  Google Scholar 

  17. Banoub, J.H., Benjelloun Mlayah, B., Ziarelli, F., Joly, N., Delmas, M.: Elucidation of the complex molecular structure of wheat straw lignin polymer by atmospheric pressure photoionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21(17), 2867 (2007)

    Article  Google Scholar 

  18. Banoub, J.H., Delmas, G.H., Joly, N., Mackenzie, G., Cachet, N., Benjelloun Mlayah, B., Delmas, M.: A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J. Mass Spectrom. 50(1), 5 (2015)

    Article  Google Scholar 

  19. Lam, H.Q., Le Bigot, Y., Denis, G., Thao, V.H., Delmas, M.: Location and composition of silicon derivatives in rice straw pulp obtained by organic acid pulping. Appita J. 58(3), 214 (2005)

    Google Scholar 

  20. Delmas, M. Benjelloun Mlayah, B., Llovera, L, Tejado Etayo, A.: Process for the extraction of silica. US Patent Application No. 15/758,250 2018

  21. Delmas, M., Levasseur, G., Benjelloun Mlayah, B., Scholastique, T.: Method for pretreating plant starting material for the production, from sacchariferous and lignocellulosic resources, of bioethanol and of sugar, and plant. US Patent Application No. 12/996,671 2011

  22. Delmas, M., Benjelloun Mlayah B.: Process for producing bioethanol from lignocellulosic plant raw material. US Patent No. 8,551,747 2013

  23. Delmas, M., Benjelloun Mlayah, B.: Process for producing bioethanol by enzymatic hydrolysis of cellulose. US Patent No. 9,518,274 2016

  24. Delmas, M., Benjelloun Mlayah, B.: Process for producing, in particular ethanol, by sequenced enzymatic hydrolysis of cellulose and hemicelluloses of a lignocellulosic raw material. US Patent Application No. 15/316,237 2017

  25. Delmas, M., Benjelloun Mlayah, B.: Process for the separation of lignins and sugars from an extraction liquor. US Patent No. 9,388,207 2016

  26. Delmas, G.H., Benjelloun Mlayah, B., Bigot, Y.L., Delmas, M.: Functionality of wheat straw lignin extracted in organic acid media. J. Appl. Polym. Sci. 121(1), 491 (2011)

    Article  Google Scholar 

  27. Lange, H., Schiffels, P., Sette, M., Sevastyanova, O., Crestini, C.: Fractional precipitation of wheat straw organosolv lignin: macroscopic properties and structural insights. ACS Sustain. Chem. Eng. 4(10), 5136 (2016)

    Article  Google Scholar 

  28. Imel, A.E., Naskar, A.K., Dadmun, M.D.: Understanding the impact of poly (ethylene oxide) on the assembly of lignin in solution toward improved carbon fiber production. ACS Appl. Mater. Interfaces 8(5), 3200–3207 (2016)

    Article  Google Scholar 

  29. Wang, Z., Yang, X., Zhou, Y., Liu, C.: Mechanical and thermal properties of polyurethane films from peroxy-acid wheat straw lignin. BioResources 8(3), 3833 (2013)

    Article  Google Scholar 

  30. Delmas, G.H., Benjelloun Mlayah, B., Bigot, Y.L., Delmas, M.: BioligninTM based epoxy resins. J. Appl. Polym. Sci. 127(3), 1863 (2013)

    Article  Google Scholar 

  31. Akato, K., Tran, C.D., Chen, J., Naskar, A.K.: Poly (ethylene oxide) -assisted macromolecular self-assembly of lignin in ABS matrix for sustainable composite applications. ACS Sustain. Chem. Eng. 3(12), 3070 (2015)

    Article  Google Scholar 

  32. Tran, C.D., Chen, J., Keum, J.K., Naskar, A.K.: A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers. Adv. Func. Mater. 26(16), 2677–2685 (2016)

    Article  Google Scholar 

  33. Llovera, L., Benjelloun Mlayah, B., Delmas, M.: Organic acid lignin-based polyurethane films: synthesis parameter optimization. BioResources 11(3), 6320 (2016)

    Article  Google Scholar 

  34. Tachon, N., Benjelloun-Mlayah, B., Delmas, M.: Organosolv wheat straw lignin as a phenol substitute for green phenolic resins. BioResources 11(3), 5797 (2016)

    Article  Google Scholar 

  35. Arshanitsa, A., Krumina, L., Telysheva, G., Dizhbite, T.: Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crops Prod. 92, 1 (2016)

    Article  Google Scholar 

  36. Lam, H.Q., Le Bigot, Y., Delmas, M.: Formic acid pulping of rice straw. Ind. Crops Prod. 14(1), 65 (2001)

    Article  Google Scholar 

  37. Rodríguez, A., Moral, A., Serrano, L., Labidi, J., Jiménez, L.: Rice straw pulp obtained by using various methods. Biores. Technol. 99(8), 2881 (2008)

    Article  Google Scholar 

  38. TAPPI: Kappa number of pulp, test method T 236 om-13. TAPPI standard test methods (1999). tappi.org

  39. Hietala, J., Vuori, A., Johnsson, P., Pollari, I., Reutemann, W., Kieczka, H.: Formic acid. Ullmann’s Encycl. Ind. Chem. 1, 1 (2016)

    Google Scholar 

  40. Delmas, M.: A lignocellulosic biomass, based process for production of lignin and syngas and electricity, efficient syngas. European Patent EP/18157515.5

  41. Delmas, M.: A method and a power plant for on demand producing electricity from a renewable lignocellulosic biomass feedstock. European Patent EP/18157086.2

  42. Delmas, M.: A low energy production process for producing paper pulp from lignocellulosic biomass. European Patent PCT/EP2018/084685

  43. Delmas, M.: A method for producing pure and highly concentrated from renewable lignocellulosic feedstock. European Patent PCT/EP2019/053783

  44. Delmas, M.: A method to convert a cellulosic fraction into Fischer Tropsch products, using a lignocellulosic raw material based process for production of synthetic gas. European Patent 19189168.8

  45. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S.: A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196 (2017)

    Article  Google Scholar 

  46. Khoo, H.H., Ee, W.L., Isoni, V.: Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green Chem. 18(7), 1912–1922 (2016)

    Article  Google Scholar 

  47. Food and Agriculture Organization: Crop Prospects and Food Situation—Quarterly Global Report No. 2, July 2021

  48. Fan, J., McConkey, B., Janzen, H., Townley-Smith, L., Wang, H.: Harvest index–yield relationship for estimating crop residue in cold continental climates. Field Crop Res. 204, 153 (2017)

    Article  Google Scholar 

  49. Food and Agriculture Organization: Global forest products, facts and figures (2018)

  50. Lacerda, B.T., Ragauskas, A.J.: A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioprod. Biorefin. 10(5), 634 (2016)

    Article  Google Scholar 

  51. Heaton, E.A., Flavell, R.B., Mascia, P.N., Thomas, S.R., Dohleman, F.G., Long, S.P.: Herbaceous energy crop development: recent progress and future prospects. Current Opinion Biotechnol. 19(3), 202 (2008)

    Article  Google Scholar 

  52. Liu, Y., Lu, S., Yan, X., Gao, S., Cui, X., Cui, Z.: Life cycle assessment of petroleum refining process: a case study in China. J. Clean. Prod. 256, 120422 (2020)

    Article  Google Scholar 

  53. Payen, A.: Memoire sur la composition du tissu propre des plantes et du ligneux. Comptes Rendus 7, 1052 (1838)

    Google Scholar 

  54. Berg, P., Lingqvist, O.: Pulp, paper, and packaging in the next decade: transformational change. McKinsey & Company, New York (2019)

    Google Scholar 

  55. Hart, P.W.: Wheat straw as an alternative pulp fiber. Tappi J. 19(1), 41 (2020)

    Article  Google Scholar 

  56. Delmas, M., Lam, H.Q., Le Bigot, Y., Avignon, G.: A new non-wood pulping process for high silicon content raw materials. Application to rice straw. Appita J. 56(2), 102 (2003)

    Google Scholar 

  57. Lam, H.Q., Le Bigot, Y., Delmas, M., Avignon, G.: Production of paper grade pulp from bagasse by a novel pulping process. Appita: Technol. Innov. Manuf. Environ. 57(1), 26 (2004)

    Google Scholar 

  58. Mire, M.A., Benjelloun-Mlayah, B., Delmas, M., Bravo, R.: Formic acid/acetic acid pulping of banana stem (Musa Cavendish). Appita J. 58(5), 393 (2005)

    Google Scholar 

  59. Sanjay, A.: Formic acid pulping process of rice straw for manufacturing of cellulosic fibers with silica. Tappi J. 20(8), 489 (2021)

    Article  Google Scholar 

  60. Rasmussen, S.C.: From aqua vitae to E85: the history of ethanol as a fuel. Substantia 3(2), 43 (2019)

    Google Scholar 

  61. Yang, B., Dai, Z., Ding, S.Y., Wyman, C.E.: Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4), 421 (2011)

    Article  Google Scholar 

  62. Delmas, M., Benjelloun Mlayah, B.: Process for producing bioethanol by enzymatic hydrolysis of cellulose. US Patent No. 9,518,274 2016

  63. Wu, B., Wang, Y.W., Dai, Y.H., Song, C., Zhu, Q.L., Qin, H., He, M.X.: Current status and future prospective of bio-ethanol industry in China. Renew. Sustain. Energy Rev. 45, 111079 (2021)

    Article  Google Scholar 

  64. Sikarwar, V.S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N., Anthony, J.E., Fennell, P.S.: An overview of advances in biomass gasification. Energy Environ. Sci. 9(10), 2939 (2016)

    Article  Google Scholar 

  65. Dry, M.E.: The Fischer–Tropsch process: 1950–2000. Catal. Today 71(3–4), 227 (2002)

    Article  Google Scholar 

  66. Ephraim, A., Munirathinam, R., Nzihou, A., Pham Minh, D., Richardson, Y.: Syngas. In: Handbook on characterization of biomass, biowaste and related by-products, p. 1113. Springer, Berlin (2020)

    Chapter  Google Scholar 

  67. dos Santos, R.G., Alencar, A.C.: Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. Int. J. Hydrogen Energy 45(36), 18114 (2020)

    Article  Google Scholar 

  68. Hepburn, C., Adlen, E., Beddington, J., Carter, E.A., Fuss, S., Mac Dowell, N., Minx, J.C., Smith, P., Williams, C.K.: The technological and economic prospects for CO2 utilization and removal. Nature 575(7781), 87 (2019)

    Article  Google Scholar 

  69. Monteil-Rivera, F., Phuong, M., Ye, M., Halasz, A., Hawari, J.: Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind. Crops Prod. 41, 356 (2013)

    Article  Google Scholar 

  70. Phillips, M.: Anselme Payen distinguished French chemist and pioneer investigator of the chemistry of lignin. J. Wash. Acad. Sci. 30(2), 65 (1940)

    Google Scholar 

  71. Schulze, F.: Contribution to the knowledge of lignin and its occurrence in the plant body (1856)

  72. Adler, E.: Lignin chemistry—past, present and future. Wood Sci. Technol. 11(3), 169 (1977)

    Article  Google Scholar 

  73. Sarkanen, K.V., Ludwig, C.H.: Lignin: occurrence, formation, structure and reactions, p. 916. Wiley, New York (1970)

    Google Scholar 

  74. Karl, F.: Analytical and biochemical background of a constitutional scheme of lignin. American Chemical Society, Washington (1966)

    Google Scholar 

  75. Yuan, T.Q., Xu, F., Sun, R.C.: Role of lignin in a biorefinery: separation characterization and valorization. J. Chem. Technol. Biotechnol. 88(3), 346 (2013)

    Article  Google Scholar 

  76. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E.: Lignin valorization : improving lignin processing in the biorefinery. Science 344(6185), 1246843 (2014)

    Article  Google Scholar 

  77. Glasser, W.G.: About making lignin great again—some lessons from the past. Front. Chem. 7, 565 (2019)

    Article  Google Scholar 

  78. Laurichesse, S., Averous, L.: Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39(7), 1266 (2014)

    Article  Google Scholar 

  79. Qu, W., Yang, J., Sun, X., Bai, X., Jin, H., Zhang, M.: Towards producing high-quality lignin-based carbon fibers: a review of crucial factors affecting lignin properties and conversion techniques. Int. J. Biol. Macromol. 189, 768 (2021)

    Article  Google Scholar 

  80. Heuss, R., Müller, N., van Sintern, W., Starke, A., Tschiesner, A.: Lightweight, heavy impact. McKinsey & Company, New York (2012)

    Google Scholar 

  81. Smolarski, N.: High-value opportunities for lignin: unlocking its potential. Frost & Sullivan, New York (2012)

    Google Scholar 

  82. Mordenti, A.L., Giaretta, E., Campidonico, L., Parazza, P., Formigoni, A.: A review regarding the use of molasses in animal nutrition. Animals 11(1), 115 (2021)

    Article  Google Scholar 

  83. Delgenes, J.P., Laplace, J.M., Moletta, R.: Method for cofermenting glucose and xylose into ethanol using a mixed micro-organism culture. Patent WO1994000589 1994

  84. Fernández-Sandoval, M.T., Galíndez-Mayer, J., Bolívar, F., Gosset, G., Ramírez, O.T., Martinez, A.: Xylose–glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single-and two-stage continuous cultures under micro-aerated conditions. Microb. Cell Fact. 18(1), 1 (2019)

    Article  Google Scholar 

  85. Felipe Hernández-Pérez, A., de Arruda, P.V., Sene, L., da Silva, S.S., Kumar Chandel, A., de Almeida Felipe, M.D.G.: Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit. Rev. Biotechnol. 39(7), 924 (2020)

    Article  Google Scholar 

  86. Arcaño, Y.D., García, O.D.V., Mandelli, D., Carvalho, W.A., Pontes, L.A.M.: Xylitol: a review on the progress and challenges of its production by chemical route. Catal. Today 344, 2 (2020)

    Article  Google Scholar 

  87. Hu, X., Shi, Y., Zhang, P., Miao, M., Zhang, T., Jiang, B.: D-mannose: properties, production, and applications: an overview. Compr. Rev. Food Sci. Food Saf. 15(4), 773 (2016)

    Article  Google Scholar 

  88. Li, X., Jia, P., Wang, T.: Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 6(11), 7621 (2016)

    Article  Google Scholar 

  89. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., Granados, M.L.: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9(4), 1144 (2016)

    Article  Google Scholar 

  90. Lamminpää, K., Ahola, J., Tanskanen, J.: Kinetics of xylose dehydration into furfural in formic acid. Ind. Eng. Chem. Res. 51(18), 6297 (2012)

    Article  Google Scholar 

  91. Yang, W., Li, P., Bo, D., Chang, H.: The optimization of formic acid hydrolysis of xylose in furfural production. Carbohyd. Res. 357, 53 (2012)

    Article  Google Scholar 

  92. Rueby, J.: Precipitated silica: technology, production, compounding & applications. VKRT seminar, 2019, PPG industries and Dutch Society of Plastic and Rubber Technologists

  93. Farirai, F., Ozonoh, M., Aniokete, T.C., Eterigho-Ikelegbe, O., Mupa, M., Zeyi, B., Daramola, M.O.: Methods of extracting silica and silicon from agricultural waste ashes and application of the produced silicon in solar cells: a mini-review. Int. J. Sustain. Eng. 14(1), 57 (2021)

    Article  Google Scholar 

  94. O'Donohue, M.: Biocore-final publishable summary report. Dissertation. 2014

  95. Newsome, D.S.: The water-gas shift reaction. Catal. Rev.: Sci. Eng. 21(2), 275 (1980)

    Article  Google Scholar 

  96. Figueres, C., Schellnhuber, H.J., Whiteman, G., Rockström, J., Hobley, A., Rahmstorf, S.: Three years to safeguard our climate. Nature News 546(7660), 593 (2017)

    Article  Google Scholar 

  97. Figueres, C.: Paris taught me how to do what is necessary to combat climate change. Nature 577, 470 (2020)

    Article  Google Scholar 

  98. Gollier, C.: Le climat après la fin du mois. Presses Universitaires de France, France (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Delmas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delmas, GH., Banoub, J.H. & Delmas, M. Lignocellulosic Biomass Refining: A Review Promoting a Method to Produce Sustainable Hydrogen, Fuels, and Products. Waste Biomass Valor 13, 2477–2491 (2022). https://doi.org/10.1007/s12649-021-01624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01624-6

Keywords

Navigation