Skip to main content
Log in

Evaluation of Bio-detoxification of Jatropha curcas Seed Cake and Cottonseed Cake by Basidiomycetes: Nutritional and Antioxidant Effects

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Poultry and swine are the major proportion of the livestock industry in terms of output value. To meet the growing need for protein sources in these sectors, the use of biomasses coming from agro-industrial residues can be an interesting option in the future years. This study aimed to evaluate the capacity of seven basidiomycetes to grow, detoxicate, increase protein content, and its antioxidant activity when grew in pure Jatropha seed cake (JSC) and cottonseed cake (CSC) biomasses and mixtures containing 50% of lignocellulosic biomasses from coconut husks and Acrocomia aculeata (macauba cake). Results showed that five basidiomycetes were able to grow in these substrates. F. hepatica, P. lecomtei, and P. pulmonarius presented the highest bio-detoxification capacity. All treatments showed a reduction in total phenolic compounds and antioxidant activity, but treatments with coconut husks showed lower reductions. Results also indicated that there were molecules produced by basidiomycetes responsible for antioxidant activity other than phenolic compounds. These results indicated that basidiomycetes could detoxify JCS and CSC biomasses, suggesting their possible use in animal feed and that the addition of coconut husks in JSC and macauba cake in cottonseed cake could promote greater colonization by fungi.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code availability

Not applicable.

References

  1. Gomes, T.G., Hadi, S.I.I.A., Costa Alves, G.S., Mendonça, S., De Siqueira, F.G., Miller, R.N.G.: Current strategies for the detoxification of Jatropha curcas seed cake: a review. J. Agric. Food Chem. 66, 2510–2522 (2018). https://doi.org/10.1021/acs.jafc.7b05691

    Article  Google Scholar 

  2. Gadelha, I.C.N., Fonseca, N.B.S., Oloris, S.C.S., Melo, M.M., Soto-Blanco, B.: Gossypol toxicity from cottonseed products. Sci. World J. 2014, 1–11 (2014). https://doi.org/10.1155/2014/231635

    Article  Google Scholar 

  3. Soares Neto, C.B., Conceição, A.A., Gomes, T.G., et al.: A comparison of physical, chemical, biological and combined treatments for detoxification of free gossypol in crushed whole cottonseed. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01290-0

    Article  Google Scholar 

  4. de Barros, C.R.M., Ferreira, L.M.M., Nunes, F.M., Bezerra, R.M.F., Dias, A.A., Guedes, C.V., Cone, J.W., Marques, G.S.M., Rodrigues, M.A.M.: The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. Eng. Life Sci. 11, 107–110 (2011). https://doi.org/10.1002/elsc.201000040

    Article  Google Scholar 

  5. Philippoussis, A., Zervakis, G., Diamantopoulou, P.: Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J. Microbiol. Biotechnol. (2001). https://doi.org/10.1023/A:1016685530312

    Article  Google Scholar 

  6. Cavalcanti-Oliveira, E.D., Silva, P.R., Rosa, T.S., Moura, N.M.L., Santos, B.C.P., Carvalho, D.B., Sousa, J.S., Carvalhinho, M.T.J.E., Castro, A.M., Freire, D.M.G.: Methods to prevent acidification of Macauba (Acrocomia aculeata) fruit pulp oil: a promising oil for producing biodiesel. Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2015.09.022

    Article  Google Scholar 

  7. Miles, P.G., Chang, S.-T.: Mushroom Biology. In Mushroom Biology. World Scientific, Singapore (1997)

    Book  Google Scholar 

  8. Bach, F., Helm, C.V., Bellettini, M.B., Maciel, G.M., Haminiuk, C.W.I.: Edible mushrooms: a potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. Technol. (2017). https://doi.org/10.1111/ijfs.13522

    Article  Google Scholar 

  9. Rashidi, A., Yang, T.: Nutritional and antioxidant values of oyster mushroom (P. sajor-caju) cultivated on rubber sawdust. Int. J. Adv. Sci. Eng. Inf. Technol. (2016). https://doi.org/10.18517/ijaseit.6.2.610

    Article  Google Scholar 

  10. Dias, E.S., Abe, C., Schwan, R.F.: Truths and myths about the mushroom Agaricus blazei. Sci. Agricol. 61(5), 545–549 (2004)

    Article  Google Scholar 

  11. Hetland, G., Johnson, E., Lyberg, T., Bernardshaw, S., Tryggestad, A.M.A., Grinde, B.: Effects of the medicinal mushroom Agaricus blazei Murill on immunity, infection and cancer. Scand. J. Immunol. (2008). https://doi.org/10.1111/j.1365-3083.2008.02156.x

    Article  Google Scholar 

  12. Bisen, P.S., Baghel, R.K., Sanodiya, B.S., Thakur, G.S., Prasad, G.: Lentinus edodes: a macrofungus with pharmacological activities. Curr. Med. Chem. (2010). https://doi.org/10.2174/092986710791698495.34(1),66-71(2003)

    Article  Google Scholar 

  13. Ruán-Soto, F., Garibay-Orijel, R., Cifuentes, J.: Process and dynamics of traditional selling wild edible mushrooms in tropical Mexico. J. Ethnobiol. Ethnomed. (2006). https://doi.org/10.1186/1746-4269-2-3

    Article  Google Scholar 

  14. Kües, U., Liu, Y.: Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. (2000). https://doi.org/10.1007/s002530000396

    Article  Google Scholar 

  15. Carrasco-González, J.A., Serna-Saldívar, S.O., Gutiérrez-Uribe, J.A.: Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J. Food Compos. Anal. (2017). https://doi.org/10.1016/j.jfca.2017.01.016

    Article  Google Scholar 

  16. Liktor-Busa, E., Kovács, B., Urbán, E., Hohmann, J., Ványolós, A.: Investigation of Hungarian mushrooms for antibacterial activity and synergistic effects with standard antibiotics against resistant bacterial strains. Lett. Appl. Microbiol. (2016). https://doi.org/10.1111/lam.12576

    Article  Google Scholar 

  17. Ribeiro, B., Valentão, P., Baptista, P., Seabra, R.M., Andrade, P.B.: Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food Chem. Toxicol. (2007). https://doi.org/10.1016/j.fct.2007.03.015

    Article  Google Scholar 

  18. Vargas-Isla, R., Capelari, M., Menolli, N., Jr., Nagasawa, E., Tokimoto, K., Ishikawa, N.K.: Relationship between Panus lecomtei and P. strigellus inferred from their morphological, molecular and biological characteristics. Mycoscience 56, 561–571 (2015). https://doi.org/10.1016/j.myc.2015.05.004

    Article  Google Scholar 

  19. Zmitrovich, I.V., Kovalenko, A.E.: Lentinoid and polyporoid fungi, two generic conglomerates containing important medicinal mushrooms in molecular perspective. Int. J. Med. Mushrooms (2016). https://doi.org/10.1615/IntJMedMushrooms.v18.i1.40

    Article  Google Scholar 

  20. Cör, D., Botić, T., Knez, Ž, Batista, U., Gregori, A., Pohleven, F., Bončina, T.: Two-stage extraction of antitumor, antioxidant and antiacetylcholinesterase compounds from Ganoderma lucidum fruiting body. J. Supercrit. Fluids (2014). https://doi.org/10.1016/j.supflu.2014.04.006

    Article  Google Scholar 

  21. Cör, D., Knez, Ž, Knez Hrnčič, M.: Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules (2018). https://doi.org/10.3390/molecules23030649

    Article  Google Scholar 

  22. Tiseo, K., Huber, L., Gilbert, M., Robinson, T.P., Van Boeckel, T.P.: Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics (2020). https://doi.org/10.3390/antibiotics9120918

    Article  Google Scholar 

  23. Makkar, H.P.S., Becker, K., Sporer, F., Wink, M.: Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agric. Food Chem. (1997). https://doi.org/10.1021/jf970036j

    Article  Google Scholar 

  24. Conceição, A.A., Soares Neto, C.B., de Ribeiro, J.A., de Siqueira, F.G., Miller, R.N.G., Mendonça, S.: Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake. PLoS ONE 13, 10196164 (2018). https://doi.org/10.1371/journal.pone.0196164

    Article  Google Scholar 

  25. Ng, H.-E., Raj, S., Wong, S., Tey, D., Tan, H.-M.: Estimation of fungal growth using the ergosterol assay: a rapid tool in assessing the microbiological status of grains and feeds. Lett. Appl. Microbiol. (2008). https://doi.org/10.1111/j.1472-765X.2007.02279.x

    Article  Google Scholar 

  26. Steudler, S., Bley, T.: Biomass estimation during macro-scale solid-state fermentation of basidiomycetes using established and novel approaches. Bioprocess Biosyst. Eng. (2015). https://doi.org/10.1007/s00449-015-1372-0

    Article  Google Scholar 

  27. Shuuluka, D., Bolton, J.J., Anderson, R.J.: Protein content, amino acid composition and nitrogen-to-protein conversion factors of Ulva rigida and Ulva capensis from natural populations and Ulva lactuca from an aquaculture system, in South Africa. J. Appl. Phycol. (2013). https://doi.org/10.1007/s10811-012-9902-5

    Article  Google Scholar 

  28. Pires, J., Torres, P.B., Santos, D., Chow, F.: Ensaio em microplaca do potencial antioxidante através do método de sequestro do radical livre DPPH para extratos de algas. Instituto de Biociências, Universidade de São Paulo, São Paulo (2017)

    Google Scholar 

  29. Silva, E.M., Souza, J.N.S., Rogez, H., Rees, J.-F., Larondelle, Y.: Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.02.055

    Article  Google Scholar 

  30. Horszwald, A., Andlauer, W.: Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. (2011). https://doi.org/10.3233/JBR-2011-020

    Article  Google Scholar 

  31. Waterhouse, A.L.: Determination of total phenolics. Curr. Protocol Food Anal. Chem. 6(1), I1-1 (2002)

    Google Scholar 

  32. R Studio Team.: RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. (2020). http://www.rstudio.com/.

  33. Hammel, K.E.: Fungal degradation of lignin. In: Cadisch, G., Giller, K.E. (Eds.) Driven by Nature: Plant Litter Quality and Decomposition. CAB International 33–45. (1997). https://doi.org/10.1016/j.tifs.2017.06.012

  34. Owaid, M.N., Barish, A., Shariati, M.A.: Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric. 2(1), 537–543 (2017)

    Google Scholar 

  35. Rossi, I.H., Monteiro, A.C., Machado, J.O., Andrioli, J.L., Barbosa, J.C.: Shiitake (Lentinula edodes) production on a sterilized bagasse substrate enriched with rice bran and sugarcane molasses. Braz. J. Microbiol. (2003). https://doi.org/10.1590/S1517-83822003000100014

    Article  Google Scholar 

  36. Pardo-Giménez, A., Pardo, J.E., Dias, E.S., et al.: Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens. Sci Rep (2020). https://doi.org/10.1038/s41598-020-65081-2

    Article  Google Scholar 

  37. Boyle, C.D.: Nutritional factors limiting the growth of Lentinula edodes and other whiterot fungi in wood. Soil Biol. Biochem. 30(6), 817–823 (1998)

    Article  Google Scholar 

  38. Kalberer, P.P.: Influence of urea and ammonium chloride on crop yield and fruit body size of shiitake (Lentinula edodes). Mush. Sci. 15, 361–366 (2000)

    Google Scholar 

  39. Rodrigues da Luz, J.M., Nunes, M.D., Paes, S.A., Torres, D.P., Kasuya, M.C.M.: Bio-detoxification of Jatropha curcas seed cake by Pleurotus ostreatus. Afr. J. Microbiol. Res. (2014). https://doi.org/10.5897/AJMR2014.6617

    Article  Google Scholar 

  40. Khan, N.A., Yasin, O., Aslam, H.M.U., Ikram, A., Maqbool, R., Akhtar, M., Asif, M., Khan, S.A., Javed, N.: Yield improvement of oyster mushroom (Pleurotus ostreatus) production using cotton seed cake with combination of wheat straw amended with rice bran cellulosic waste materials. Int. J. Biosci. (2019). https://doi.org/10.12692/ijb/14.2.340-349

    Article  Google Scholar 

  41. Basso, V., Schiavenin, C., Mendonça, S., Siqueira, F.G., Salvador, M., Camassola, M.: Chemical features and antioxidant profile by Schizophyllum commune produced on different agroindustrial wastes and byproducts of biodiesel production. Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127089

    Article  Google Scholar 

  42. Castro, C.P.: Characterization and ileal digestibility of cotton seed cake pre-traded by the macro-basidiomycete Fistulina hepatica CC102 in swines diets. Dissertation (Master in Agricultural Microbiology) - Federal University of Lavras. (2018).

  43. Bose, A., Keharia, H.: Phorbol ester degradation in Jatropha seedcake using white rot fungi. Biotech (2014). https://doi.org/10.1007/s13205-013-0174-9

    Article  Google Scholar 

  44. Corrêa, R.C.G., Peralta, R.M., Bracht, A., Ferreira, I.C.F.R.: The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci. Technol. (2017). https://doi.org/10.1016/j.tifs.2017.06.012

    Article  Google Scholar 

  45. Mille-Lindblom, C., von Wachenfeldt, E., Tranvik, L.J.: Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. J. Microbiol. Methods (2004). https://doi.org/10.1016/j.mimet.2004.07.010

    Article  Google Scholar 

  46. Barreira, J.C.M., Oliveira, M.B.P.P., Ferreira, I.C.F.R.: Development of a novel methodology for the analysis of ergosterol in mushrooms. Food Anal. Methods. (2014). https://doi.org/10.1007/s12161-013-9621-9

    Article  Google Scholar 

  47. Ballaminut, N., Matheus, D.R.: Characterization of fungal inoculum used in soil bioremediation. Braz. J. Microbiol. (2007). https://doi.org/10.1590/S1517-83822007000200011

    Article  Google Scholar 

  48. Niemenmaa, O., Galkin, S., Hatakka, A.: and Ergosterol contents of some wood-rotting basidiomycete fungi grown in liquid and solid culture conditions. Biodegradation (2008). https://doi.org/10.1016/j.ibiod.2007.12.009

    Article  Google Scholar 

  49. Duffy, S.K., Kelly, A.K., Rajauria, G., Jakobsen, J., Clarke, L.C., Monahan, F.J., Dowling, K.G., Hull, G., Galvin, K., Cashman, K.D., Hayes, A., O’Doherty, J.V.: The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content. Meat Sci. (2018). https://doi.org/10.1016/j.meatsci.2018.04.014

    Article  Google Scholar 

  50. Kasuya, M.C.M., da Luz, J.M.R., Pereira, L.P.S., da Silva, J.S., Montavani, H.C., Rodrigues, M.T.: Bio-detoxification of Jatropha seed cake and its use in animal feed. In: Fang, Z. (ed.) Biodiesel, pp. 309–330. InTech, Singapore (2012)

    Google Scholar 

  51. Rajarathnam, S., Shashirekha, M.N., Bano, Z.: Biodegradation of gossypol by the white oyster mushroom, Pleurotus florida, during culturing on rice straw growth substrate, supplemented with cottonseed powder. World J. Microbiol. Biotechnol. (2001). https://doi.org/10.1023/A:1016603510901

    Article  Google Scholar 

  52. Araujo, A.P.F.: Tratamento de torta de semente de algodão por autoclavagem e macrofungos para degradação de gossypol. Dissertação de Mestrado Acadêmico. Universidade Federal de Tocantins. Curso de Pós Graduação em Biotecnologia. 89f. 2018

  53. Nayan, N., Sonnenberg, A.S.M., Hendriks, W.H., Cone, J.W.: Variation in the solubilization of crude protein in wheat straw by different white-rot fungi. Anim. Feed Sci. Technol. (2018). https://doi.org/10.1016/j.anifeedsci.2018.06.009

    Article  Google Scholar 

  54. Belewu, M.A., Ahmed, O., Ibrahim, S.O.: Solid state fermentation of Jatropha curcas kernel cake with cocktail of fungi. Int. J. Biosci. 1(1), 12–19 (2011)

    Google Scholar 

  55. Ojediran, T.K., Ogunmola, B.T., Ajayi, A.O., Adepoju, M.A., Odelade, K., Emiola, I.A.: Nutritive value of processed dietary fungi treated Jatropha curcas L. kernel meals: voluntary intake, growth, organ weight and hepatic histology of broiler chicks. Trop. Agric. (2016)

  56. Sanusi, G.O., Belewu, M.A., Oduguwa, B.O., Enujiugha, T.F., Oluwole, J.Y.T., Okunlola, A.I.: Changes in chemical composition of Jatropha curcas kernel cake after solid-state fermentation using some selected fungi. Global J. Biol. Agric. Health Sci. 2(2), 62–66 (2013)

    Google Scholar 

  57. Zhang, W., Xu, Z., Sun, J., Yang, X.: Effect of selected fungi on the reduction of gossypol levels and nutritional value during solid substrate fermentation of cottonseed meal. J. Zhejiang Univ. Sci. B (2006). https://doi.org/10.1631/jzus.2006.B0690

    Article  Google Scholar 

  58. Metri, Y., Warly, L.: Biodegradation of lignin by white rot fungi (Pleurotus ostreatus) to decrease the fibre components in the Palm Midrib. Pak. J. Nutr. (2018). https://doi.org/10.3923/pjn.2018.71.75

    Article  Google Scholar 

  59. Zadrazil, F., Diedrichs, M., Janssen, H., Schuchardt, F., Park, J.S.: Large Scale Solid State Fermentation of Cereal Straw with Pleurotus spp. Advances in Biological Treatment of Lignocellulosic Materials, pp. 31–41. Thünen-Institut, London (1990)

    Google Scholar 

  60. Karunanandaa, K., Fales, S.L., Varga, G.A., Royse, D.J.: Chemical composition and biodegradability of crop residues colonized by white-rot fungi. J. Sci. Food Agric. (1992). https://doi.org/10.1002/jsfa.2740600117

    Article  Google Scholar 

  61. Tripathi, M.K., Mishra, A.S., Misra, A.K., Vaithiyanathan, S., Prasad, R., Jakhmola, R.C.: Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism. Lett. Appl. Microbiol. (2008). https://doi.org/10.1111/j.1472-765X.2008.02320.x

    Article  Google Scholar 

  62. Yang, H., Zhang, L.: Changes in some components of soymilk during fermentation with the basidiomycete Ganoderma lucidum. Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2008.05.024

    Article  Google Scholar 

  63. Chandra, P., Arora, D.S., Pal, M., Sharma, R.K.: Antioxidant potential and extracellular auxin production by white rot fungi. Appl. Biochem. Biotechnol. (2019). https://doi.org/10.1007/s12010-018-2842-z

    Article  Google Scholar 

  64. Nithiyanantham, S., Siddhuraju, P., Francis, G.: Potential of Jatropha curcas as a biofuel, animal feed and health products. J. Am. Oil Chem. Soc. (2012). https://doi.org/10.1007/s11746-012-2012-3

    Article  Google Scholar 

  65. Prior, R.L., Wu, X., Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. (2005). https://doi.org/10.1021/jf0502698

    Article  Google Scholar 

  66. Lin, C.-H., Wei, Y.-T., Chou, C.-C.: Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol. (2006). https://doi.org/10.1016/j.fm.2005.12.004

    Article  Google Scholar 

  67. Thetsrimuang, C., Khammuang, S., Chiablaem, K., Srisomsap, C., Sarnthima, R.: Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2011.03.077

    Article  Google Scholar 

  68. Chen, Y., Xie, M.-Y., Nie, S.-P., Li, C., Wang, Y.-X.: Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. (2008). https://doi.org/10.1016/j.foodchem.2007.08.021

    Article  Google Scholar 

  69. Jung, J.-Y., Lee, I.-K., Seok, S.-J., Lee, H.-J., Kim, Y.-H., Yun, B.-S.: Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus. J. Appl. Microbiol. (2008). https://doi.org/10.1111/j.1365-2672.2008.03737.x

    Article  Google Scholar 

  70. Barros, L., Ferreira, I., Baptista, P.: Phenolics and antioxidant activity of mushroom Leucopaxillus giganteus mycelium at different carbon sources. Food Sci. Technol. Int. (2008). https://doi.org/10.1177/1082013208090094

    Article  Google Scholar 

  71. Kersten, P., Cullen, D.: Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. (2007). https://doi.org/10.1016/j.fgb.2006.07.007

    Article  Google Scholar 

  72. Zhai, F.-H., Wang, Q., Han, J.-R.: Nutritional components and antioxidant properties of seven kinds of cereals colonized by the basidiomycete Agaricus blazei. J. Cereal Sci. (2015). https://doi.org/10.1016/j.jcs.2015.07.010

    Article  Google Scholar 

  73. Saaty, T.: How to make a decision: the analytic hierarchy process. Interfaces. (1994). http://www.jstor.org/stable/25061950

Download references

Acknowledgements

The authors would like to thank FAPDF (Fundação de Apoio à Pesquisa do Distrito Federal—Federal District Research Support Foundation-01983.001720/2017) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Coordination for the Improvement of Higher Education Personnel) for granting scholarships to some of the authors.

Funding

This research was financially supported by FAPDF (Fundação de Apoio à Pesquisa do Distrito Federal—Federal District Research Support Foundation) (0193.001720–2017), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Coordination for the Improvement of Higher Education Personnel).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marina Borges Guimarães or Simone Mendonça.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12649_2021_1599_MOESM1_ESM.pdf

Supplementary Figure 1 Pearson’s correlation matrix in Jatropha seed cake treatments. GR: growth rate; CPi: crude protein increase; CP: crude protein; iCP: increase of crude protein; DR: toxic compounds degradation rate; TPC: total phenolic compounds. Supplementary file 1 (PDF 300 kb)

12649_2021_1599_MOESM2_ESM.pdf

Supplementary Figure 2 Pearson’s correlation matrix in cottonseed cake treatments. GR: growth rate; CPi: crude protein increase; CP: crude protein; iCP: increase of crude protein; DR: toxic compounds degradation rate; TPC: total phenolic compounds. Supplementary file 2 (PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, M.B., de Siqueira, F.G., Campanha, R.B. et al. Evaluation of Bio-detoxification of Jatropha curcas Seed Cake and Cottonseed Cake by Basidiomycetes: Nutritional and Antioxidant Effects. Waste Biomass Valor 13, 1475–1490 (2022). https://doi.org/10.1007/s12649-021-01599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01599-4

Keywords

Navigation