Skip to main content

Advertisement

Log in

Residue of Corncob Gasification as Electrode of Supercapacitors: An Experimental and Theoretical Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, it is proven that a biochar obtained from a commercial gasifier can be used as electrode material for supercapacitors (SC). This biochar was produced at 1000 °C from corn cob wastes (GAS), and was compared to an activated biochar obtained in a traditional lab pyrolysis process (LAB). Both biochars were characterized by different physicochemical techniques, observing their amorphous nature with well-developed microporosity dependent of their pretreatment and production methodology. Furthermore, a computational modeling based on Molecular Dynamics at the ReaxFF level was also performed to elucidate the geometry of the resulting microporous structure after simulated pyrolysis. X-ray structure and pore size distribution are in agreement with those results obtained via computational simulation. Both carbon materials were electrochemically evaluated in acidic electrolyte using 3 and 2 electrode systems, obtaining capacitances of 130 F g\(^{-1}\) (20 mV s\(^{-1}\)), and excellent performance compared to commercial activated carbons, with only about 10\(\%\) of capacitance loss after 5000 cycles. However, GAS performance in SC was higher than activated biochar due to its higher micropore volume. This study provides a novel useful application to use gasifier residues from agricultural biomass waste for energy storage devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tchapda, A., Pisupati, S.: A review of thermal co-conversion of coal and biomass/waste. Energies 7(3), 1098 (2014). https://doi.org/10.3390/en7031098

    Article  Google Scholar 

  2. Dhyani, V., Bhaskar, T.: A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 129, 695 (2018). https://doi.org/10.1016/j.renene.2017.04.035

    Article  Google Scholar 

  3. Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: Biochar as an exceptional bioresource for energy. Agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz. 7(2), 201 (2016). https://doi.org/10.1007/s12649-015-9459-z

    Article  Google Scholar 

  4. González-García, P.: Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393 (2018). https://doi.org/10.1016/j.rser.2017.04.117

    Article  Google Scholar 

  5. Abioye, A.M., Ani, F.N.: Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sustain. Energy Rev. 52, 1282 (2015). https://doi.org/10.1016/j.rser.2015.07.129

    Article  Google Scholar 

  6. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 30 Nov 2018

  7. International Maize and Wheat Improvement Center. https://www.cimmyt.org/. Accessed 31 May 2019

  8. Green to Energy. http://g2e.mx/qs.html. Accessed 31 May 2019

  9. Molino, A., Chianese, S., Musmarra, D.: Biomass gasification technology: the state of the art overview. J. Energy Chem. 25(1), 10 (2016). https://doi.org/10.1016/j.jechem.2015.11.005

    Article  Google Scholar 

  10. Watson, J., Zhang, Y., Si, B., Chen, W.T., de Souza, R.: Gasification of biowaste: a critical review and outlooks. Renew. Sustain. Energy Rev. 83, 1 (2018). https://doi.org/10.1016/j.rser.2017.10.003

    Article  Google Scholar 

  11. Sansaniwal, S., Pal, K., Rosen, M., Tyagi, S.: Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sustain. Energy Rev. 72, 363 (2017). https://doi.org/10.1016/j.rser.2017.01.038

    Article  Google Scholar 

  12. Anukam, A.I., Goso, B.P., Okoh, O.O., Mamphweli, S.N.: Studies on characterization of corn cob for application in a gasification process for energy production. J. Chem. 2017, 1 (2017). https://doi.org/10.1155/2017/6478389

    Article  Google Scholar 

  13. San Miguel, G., Domínguez, M.P., Hernández, M., Sanz-Pérez, F.: Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass Bioenergy 47, 134 (2012). https://doi.org/10.1016/j.biombioe.2012.09.049

    Article  Google Scholar 

  14. Ioannidou, O., Zabaniotou, A.: Agricultural residues as precursors for activated carbon production: a review. Renew. Sustain. Energy Rev. 11(9), 1966 (2007). https://doi.org/10.1016/j.rser.2006.03.013

    Article  Google Scholar 

  15. Seredych, M., Hulicova-Jurcakova, D., Lu, G.Q., Bandosz, T.J.: Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11), 1475 (2008). https://doi.org/10.1016/j.carbon.2008.06.027

    Article  Google Scholar 

  16. Puziy, A., Poddubnaya, O., Socha, R., Gurgul, J., Wisniewski, M.: XPS and NMR studies of phosphoric acid activated carbons. Carbon 46(15), 2113 (2008). https://doi.org/10.1016/j.carbon.2008.09.010

    Article  Google Scholar 

  17. Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1), 67 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012

    Article  Google Scholar 

  18. Zhao, X., Wang, A., Yan, J., Sun, G., Sun, L., Zhang, T.: Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem. Mater. 22(19), 5463 (2010). https://doi.org/10.1021/cm101072z

    Article  Google Scholar 

  19. Hulicova-Jurcakova, D., Seredych, M., Lu, G.Q., Bandosz, T.J.: Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438 (2009). https://doi.org/10.1002/adfm.200801236

    Article  Google Scholar 

  20. Hao, L., Li, X., Zhi, L.: Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899 (2013). https://doi.org/10.1002/adma.201301204

    Article  Google Scholar 

  21. Shen, W., Fan, W.: Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999 (2013). https://doi.org/10.1039/C2TA00028H

    Article  Google Scholar 

  22. Bleda-Martínez, M., Maciá-Agulló, J., Lozano-Castelló, D., Morallón, E., Cazorla-Amorós, D., Linares-Solano, A.: Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 43(13), 2677 (2005). https://doi.org/10.1016/j.carbon.2005.05.027

    Article  Google Scholar 

  23. Chen, H.: Biotechnology of Lignocellulose. Chemical Industry Press, Beijing (2014). https://doi.org/10.1007/978-94-007-6896-7

    Book  Google Scholar 

  24. Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Suárez-García, F., Tascón, J.M.: Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43(14), 2857 (2005). https://doi.org/10.1016/j.carbon.2005.06.014

    Article  Google Scholar 

  25. Puziy, A., Poddubnaya, O., Martínez-Alonso, A., Suárez-Grcía, F., Tascón, J.: Synthetic carbons activated with phosphoric acid. Carbon 40(9), 1493 (2002). https://doi.org/10.1016/S0008-6223(01)00317-7

    Article  Google Scholar 

  26. Conway, B.E.: Electrochemical Supercapacitors, 1st edn. Springer, Boston (1999). https://doi.org/10.1007/978-1-4757-3058-6

    Book  Google Scholar 

  27. Béguin, F., Frackowiak, E.: Supercapacitors, 1st edn. Wiley-VCH, Weinheim (2013). https://doi.org/10.1002/9783527646661

    Book  Google Scholar 

  28. Pandolfo, A., Hollenkamp, A.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  Google Scholar 

  29. Lu, H., Zhao, X.S.: Biomass-derived carbon electrode materials for supercapacitors. Sustain. Energy Fuels 1, 1265 (2017). https://doi.org/10.1039/C7SE00099E

    Article  Google Scholar 

  30. Qu, W.H., Xu, Y.Y., Lu, A.H., Zhang, X.Q., Li, W.C.: Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 189, 285 (2015). https://doi.org/10.1016/j.biortech.2015.04.005

    Article  Google Scholar 

  31. Genovese, M., Jiang, J., Lian, K., Holm, N.: High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J. Mater. Chem. A 3, 2903 (2015). https://doi.org/10.1039/C4TA06110A

    Article  Google Scholar 

  32. Karnan, M., Subramani, K., Srividhya, P., Sathish, M.: Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes. Electrochim. Acta 228, 586 (2017). https://doi.org/10.1016/j.electacta.2017.01.095

    Article  Google Scholar 

  33. Gopiraman, M., Deng, D., Kim, B.S., Chung, I.M., Kim, I.S.: Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors. Appl. Surf. Sci. 409, 52 (2017). https://doi.org/10.1016/j.apsusc.2017.02.209

    Article  Google Scholar 

  34. Yang, S., Zhang, K.: Converting corncob to activated porous carbon for supercapacitor application. Nanomaterials 8(4), 181 (2018). https://doi.org/10.3390/nano8040181

    Article  Google Scholar 

  35. Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S.K., Grace, A.N.: Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 9(1), 16315 (2019). https://doi.org/10.1038/s41598-019-52006-x

    Article  Google Scholar 

  36. Egami, T., Billinge, S.: Underneath the Bragg Peaks, Structural Analysis of Complex Materials. Pergamon Materials Series, Pergamon (2003). https://doi.org/10.1016/S1470-1804(03)80003-2

    Book  Google Scholar 

  37. Billinge, S.J.L., Kanatzidis, M.G.: Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem. Commun. 7, 749–760 (2004). https://doi.org/10.1039/b309577k

    Article  Google Scholar 

  38. Patschke, R., Breshears, J.D., Brazis, P., Kannewurf, C.R., Billinge, S.J., Kanatzidis, M.G.: CuxUTe3: Stabilization of UTe3 in the ZrSe3 structure type via copper insertion. The artifact of Te-Te chains and evidence for distortions due to long range modulations. J. Am. Chem. Soc. 47, 134 (2001). https://doi.org/10.1021/ja0042534

    Article  Google Scholar 

  39. Qiu, X., Thompson, J.W., Billinge, S.J.L.: PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37(4), 678 (2004). https://doi.org/10.1107/S0021889804011744

    Article  Google Scholar 

  40. Zhang, H., Chen, B., Banfield, J.F., Waychunas, G.A.: Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 78(21), 214106 (2008). https://doi.org/10.1103/PhysRevB.78.214106

    Article  Google Scholar 

  41. Proffen, T., Billinge, S.J.L.: PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J. Appl. Crystallogr. 32(3), 572 (1999). https://doi.org/10.1107/S0021889899003532

    Article  Google Scholar 

  42. Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., Davies, C.A.: New approaches to measuring biochar density and porosity. Biomass Bioenergy 66, 176 (2014). https://doi.org/10.1016/j.biombioe.2014.03.059

    Article  Google Scholar 

  43. Moya, X., Muñoz-Rojas, D.: Materials for Sustainable Energy Applications: Conversion, Storage, Transmission, and Consumption. Jenny Stanford Publishing, Taipei (2016). https://doi.org/10.4032/9789814411820

    Book  Google Scholar 

  44. Vaquero, S., Palma, J., Anderson, M., Marcilla, R.: Mass-balancing of electrodes as a strategy to widen the operating voltage window of carbon/carbon supercapacitors in neutral aqueous electrolytes. Int. J. Electrochem. Sci. 8(8), 10293 (2013)

    Google Scholar 

  45. van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396 (2001). https://doi.org/10.1021/jp004368u

    Article  Google Scholar 

  46. Kim, S.Y., van Duin, A.C., Kubicki, J.D.: Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl-, methanol, and formic acid using a reactive force field. J. Mater. Res. 28(3), 513 (2013). https://doi.org/10.1557/jmr.2012.367

    Article  Google Scholar 

  47. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  48. Muñiz, J., Espinosa-Torres, N.D., Guillén-López, A., Longoria, A., Cuentas-Gallegos, A.K., Robles, M.: Geometrical structure data of nanoporous carbon systems obtained from computer simulated pyrolysis. Data Brief 24, 103874 (2019). https://doi.org/10.1016/j.dib.2019.103874

    Article  Google Scholar 

  49. Wang, Q.D., Wang, J.B., Li, J.Q., Tan, N.X., Li, X.Y.: Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combus. Flame 158(2), 217 (2011). https://doi.org/10.1016/j.combustflame.2010.08.010

    Article  Google Scholar 

  50. Han, S.S., Kang, J.K., Lee, H.M., van Duin, A.C.T., Goddard, W.A.: Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles. Appl. Phys. Lett. 86(20), 203108 (2005). https://doi.org/10.1063/1.1929084

    Article  Google Scholar 

  51. van Duin, A.C.T., Strachan, A., Stewman, S., Zhang, Q., Xu, X., Goddard, W.A.: ReaxFF SiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107(19), 3803 (2003). https://doi.org/10.1021/jp0276303

    Article  Google Scholar 

  52. Willems, T.F., Rycroft, C.H., Kazi, M., Meza, J.C., Haranczyk, M.: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149(1), 134 (2012). https://doi.org/10.1016/j.micromeso.2011.08.020

    Article  Google Scholar 

  53. Adler, E.: Lignin chemistry past, present and future. Wood Sci. Technol. 11(3), 169 (1977). https://doi.org/10.1007/BF00365615

    Article  Google Scholar 

  54. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157 (2009). https://doi.org/10.1002/jcc.21224

    Article  Google Scholar 

  55. Flores, R.A.C., Garca, F.P., Snchez, E.M.O., Mir, A.M.B., Sandoval, O.A.A.: Physico-chemical characterization of agricultural residues as precursors for activated carbon preparation. Bulgarian J. Agric. Sci. 24, 427 (2018)

    Google Scholar 

  56. Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T.: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20(1), 388 (2006). https://doi.org/10.1021/ef0580117

    Article  Google Scholar 

  57. Ioannidou, O., Zabaniotou, A., Antonakou, E., Papazisi, K., Lappas, A., Athanassiou, C.: Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew. Sustain. Energy Rev. 13(4), 750 (2009). https://doi.org/10.1016/j.rser.2008.01.004

    Article  Google Scholar 

  58. Sing, J., Everett, K.S.W., Haul, D.H., Moscou, R.A.W., Pierotti, L., Rouquerol, R.A., Siemieniewska, T.: Reporting physisorption, pure and applied data for gas/solid systems with special reference to the determination of surface area and porosity. Chemistry 57, 603 (1985)

    Google Scholar 

  59. Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414

    Article  Google Scholar 

  60. Li, X., Hayashi, J., Li, C.: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85(12–13), 1700 (2006). https://doi.org/10.1016/j.fuel.2006.03.008

    Article  Google Scholar 

  61. Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., Silva, S.R.P.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80(1), 440 (1996). https://doi.org/10.1063/1.362745

    Article  Google Scholar 

  62. Wang, Y., Alsmeyer, D.C., McCreery, R.L.: Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2(5), 557 (1990). https://doi.org/10.1021/cm00011a018

    Article  Google Scholar 

  63. Larkin, P.J.: Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, Amsterdam (2017). https://doi.org/10.1016/C2010-0-68479-3

    Book  Google Scholar 

  64. Odeh, A.O.: Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks. J. Fuel Chem. Technol. 43(2), 129 (2015). https://doi.org/10.1016/S1872-5813(15)30001-3

    Article  Google Scholar 

  65. Danish, M., Hashim, R., Ibrahim, M.M., Sulaiman, O.: Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass Bioenergy 61, 167 (2014). https://doi.org/10.1016/j.biombioe.2013.12.008

    Article  Google Scholar 

  66. Zhao, L., Cao, X., Zheng, W., Wang, Q., Yang, F.: Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere 136, 133 (2015). https://doi.org/10.1016/j.chemosphere.2015.04.053

    Article  Google Scholar 

  67. Kim, C.: Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J. Power Sources 142(1–2), 382 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.013

    Article  Google Scholar 

  68. Gabhi, R.S., Kirk, D.W., Jia, C.Q.: Preliminary investigation of electrical conductivity of monolithic biochar. Carbon 116, 435 (2017). https://doi.org/10.1016/j.carbon.2017.01.069

    Article  Google Scholar 

  69. Muiz, J., Espinosa-Torres, N.D., Guilln-Lpez, A., Longoria, A., Cuentas-Gallegos, A.K., Robles, M.: Insights into the design of carbon electrodes coming from lignocellulosic components pyrolysis with potential application in energy storage devices: a combined in silico and experimental study. J. Anal. Appl. Pyrolysis 139, 131 (2019). https://doi.org/10.1016/j.jaap.2019.01.018

    Article  Google Scholar 

  70. Kaiser, K., Scriven, L.M., Schulz, F., Gawel, P., Gross, L., Anderson, H.L.: An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365(6459), 1299 (2019). https://doi.org/10.1126/science.aay1914

    Article  Google Scholar 

  71. Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C.M.B., Stephenson, T., Olsen, B.C., Mitlin, D.: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6(3), 871 (2013). https://doi.org/10.1039/c2ee23599d

    Article  Google Scholar 

  72. Andreas, H.A., Conway, B.E.: Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim. Acta 51(28), 6510 (2006). https://doi.org/10.1016/j.electacta.2006.04.045

    Article  Google Scholar 

  73. Fic, K., Platek, A., Piwek, J., Frackowiak, E.: Sustainable materials for electrochemical capacitors. Mater. Today 21(4), 437 (2018). https://doi.org/10.1016/j.mattod.2018.03.005

    Article  Google Scholar 

  74. Lobato-Peralta, D.R., Pacheco-Cataln, D.E., Altuzar-Coello, P.E., Bguin, F., Ayala-Corts, A., Villafn-Vidales, H.I., Arancibia-Bulnes, C.A., Cuentas-Gallegos, A.K.: Sustainable production of self-activated bio-derived carbons through solar pyrolysis for their use in supercapacitors. J. Anal. Appl. Pyrolysis 150, 104901 (2020). https://doi.org/10.1016/j.jaap.2020.104901

    Article  Google Scholar 

  75. Liu, X., Wang, Y., Zhan, L., Qiao, W., Liang, X., Ling, L.: Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J. Solid State Electrochem. 15(2), 413 (2011). https://doi.org/10.1007/s10008-010-1100-2

    Article  Google Scholar 

  76. Portet, C., Taberna, P., Simon, P., Laberty-Robert, C.: Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49(6), 905 (2004)

    Article  Google Scholar 

  77. Segalini, J., Daffos, B., Taberna, P., Gogotsi, Y., Simon, P.: Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55(25), 7489 (2010). https://doi.org/10.1016/j.electacta.2010.01.003

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support to projects PAPIIT (IG100217)—UNAM, and CONACYT (279953). We acknowledge to the technical team of Green to energy (G2E) and its general manager Ing. Daniel Camarena for supplying us the solid residue and photographs of its gasifier. J.M. wants to acknowledge the support given by PAPIIT-(IA102820)-UNAM; Fondo Sectorial de Investigación para la Educación-CONACYT under Project No. A1-S-13294, and the Supercomputing Department of Universidad Nacional Autónoma de México for the computing resources under Project No. LANCAD-UNAM-DGTIC-310 and LANCAD-UNAM-DGTIC-370. We also gratefully acknowledge the technical work of Diego R. Lobato, Patricia Eugenia Altuzar Coello for TGA and XRD, Marcos Fuentes Pérez for the FTIR, Eduardo Fuentes Quezada for physisorption, José Martín Baas López through CONACYT project 253986 for elemental analyses (CICY), and Rogelio Morán Elvira for SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karina Cuentas-Gallegos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Casillas, D.C., Mascorro-Gutiérrez, I., Betancourt-Mendiola, M.L. et al. Residue of Corncob Gasification as Electrode of Supercapacitors: An Experimental and Theoretical Study. Waste Biomass Valor 12, 4123–4140 (2021). https://doi.org/10.1007/s12649-020-01248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01248-2

Keywords

Navigation