Skip to main content

Advertisement

Log in

Preheat-Treatment and Bleaching Agents Affect Characteristics of Bio-calcium from Asian Sea Bass (Lates calcarifer) Backbone

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to elucidate the effect of preheat-treatments and bleaching agents on molecular characteristics and bioavailability of obtained bio-calcium.

Methods

Bio-calcium from Asian sea bass backbone was prepared using different preheat-treatment methods (boiling at 100 °C for 30 min or autoclaving at 121 °C for 90 min). Subsequent bleaching was carried out using 2.5% sodium hypochlorite, followed by 2.5% hydrogen peroxide or using 2.5% hydrogen peroxide alone.

Results

Bio-calcium powder from autoclaved bone had higher calcium content (35.9 ± 0.2%) than that produced from boiled bone (25.7 ± 1.2%). Particle size of bio-calcium from autoclaved bone (16.71 ± 16.71 µm) was lower than that from boiled bone (52.85 ± 43.16 µm). Highest whiteness index (92.26 ± 0.21) was observed for autoclaved bone bio-calcium when hydrogen peroxide alone was used as bleaching agent. FTIR study confirmed that Ca-hydroxyapatite was present in both bio-calcium from boiled and autoclaved bones but the amount was higher in the latter.

Conclusion

Boiling or boiling/autoclaving could be alternative pre-treatment for bio-calcium production to reduce chemical or alkali used and to soften the bone. However, solubility of autoclaved bone bio-calcium was lower than boiled bone counterpart. Enhancement of solubility is still needed to improve bio-availability of bio-calcium from Asian sea bass backbone.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO [Food and Agricultural Organization]: The State of World Fisheries and Aquaculture 2020. Sustainability in Action. FAO, Rome (2020)

    Google Scholar 

  2. Department of Fisheries (DOF): Thailand Fishery Statistics (2020) https://www4.fisheries.go.th/dof_en/view_message/233. Accessed 24 July 2020

  3. Joerakate, W., Koonawootrittriron, S., Yenmak, S., Senanan, W., Poompuang, S., Tunkijjanukij, S.: Growth performance and genetic diversity in four strains of Asian sea bass, Lates calcarifer (Bloch, 1790) cultivated in Thailand. ANRES 52, 93–98 (2018). https://doi.org/10.1016/j.anres.2018.05.015

    Article  Google Scholar 

  4. Yenmak, S., Joerakate, W., Poompuang, S.: Prediction of fillet yield in hatchery populations of Asian sea bass, Lates calcarifer (Bloch, 1790) using body weight and measurements. Int. Aquat. Res. 10, 253–261 (2018). https://doi.org/10.1007/s40071-018-0202-9

    Article  Google Scholar 

  5. Toppe, J., Albrektsen, S., Hope, B., Aksnes, A.: Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Phys. Part B 146, 395–401 (2007). https://doi.org/10.1016/j.cbpb.2006.11.020

    Article  Google Scholar 

  6. Tongchan, P., Prutipanlai, S., Niyomwas, S., Thongraung, C.: Effect of calcium compound obtained from fish by-product on calcium metabolism in rats. Asian J. Food Agro-Ind. 2, 669–676 (2009)

    Google Scholar 

  7. Mustafa, N., Ibrahim, M.H.I., Asmawi, R., Amin, A.M.: Hydroxyapatite extracted from waste fish bones and scales via calcination method. Appl. Mech. Mater. 773-774, 287–290 (2015). https://doi.org/10.4028/www.scientific.net/amm.773-774.287

    Article  Google Scholar 

  8. Wibisono, Y., Dwijaksara, N.L.B., Widayatno, W.B., Wismogroho, A.S., Amal, M.I., Rochman, N.T., Nishimura, T., Noviyanto, A.: Synthesis and sinterability of hydroxyapatite from fishery by-products. J. Korean Ceram. Soc. 55, 570–575 (2018). https://doi.org/10.4191/kcers.2018.55.6.03

    Article  Google Scholar 

  9. Benjakul, S., Mad-Ali, S., Senphan, T., Sookchoo, P.: Biocalcium powder from precooked skipjack tuna bone: production and its characteristics. J. Food Biochem. e12412, 1–8 (2017). https://doi.org/10.1111/jfbc.12412

    Article  Google Scholar 

  10. Benjakul, B., Mad-Ali, S., Senphan, T., Sookchoo, P.: Characteristics of biocalcium from precooked skipjack tuna bone affected by different treatment. Waste Biomass. Valoriz. 9, 1369–1377 (2018). https://doi.org/10.1007/s12649-017-9927-8

    Article  Google Scholar 

  11. Idowu, A.T., Benjakul, S., Sae-Leaw, T., Sookchoo, P., Kishimura, H., Suzuki, N., Kitani, Y.: Amino acid composition, volatile compounds and bioavailability of biocalcium powders from salmon frame as affected by pretreatment. J. Aquat. Food Prod. Technol. 28, 1–9 (2019). https://doi.org/10.1080/10498850.2019.1639235

    Article  Google Scholar 

  12. Manangi, M.K., Coon, C.N.: The effect of calcium carbonate particle size and solubility on the utilization of phosphorus from phytase for broilers. Int. J. Poult. Sci. 6, 85–90 (2007). https://doi.org/10.3923/ijps.2007.85.90

    Article  Google Scholar 

  13. Yin, T., Park, J.W., Xiong, S.: Effects of micron fish bone with different particle size on the properties of silver carp (Hypophthalmichthys molitrix) surimi gels. J. Food Qual. (2017). https://doi.org/10.1155/2017/8078062

    Article  Google Scholar 

  14. Association of Official Analytical Chemists (AOAC): Official Methods of Analysis of Association of Chemistry. AOAC International (Gaithersburg), Washington, DC (2000)

    Google Scholar 

  15. Bergman, I., Loxley, R.: Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 35, 1961–1965 (1963). https://doi.org/10.1021/ac60205a053

    Article  Google Scholar 

  16. Buege, J.A., Aust, S.D.: Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310 (1978). https://doi.org/10.1016/s0076-6879(78)52032-6

    Article  Google Scholar 

  17. Li, M., Lee, T.C.: Effect of cysteine on the functional properties and microstructures of wheat flour extrudates. J. Agric. Food Chem. 44, 1871–1880 (1996). https://doi.org/10.1021/jf9505741

    Article  Google Scholar 

  18. Ene, A., Boşneagă, A., Georgescu, L.: Determination of heavy metals in soils using XRF technique. Rom. J. Phys. 55, 815–820 (2009)

    Google Scholar 

  19. Yin, T., Du, H., Zhang, J., Xiong, S.: Preparation and characterization of ultrafine of fish bone powder. J. Aquat. Food Prod. Technol. 25, 1045–1055 (2016). https://doi.org/10.1080/10498850.2015.1010128

    Article  Google Scholar 

  20. Feist, B., Mikula, B.: Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem. 147, 302–306 (2014). https://doi.org/10.1016/j.foodchem.2013.10.002

    Article  Google Scholar 

  21. Karnjanapratum, S., Benjakul, S.: Antioxidative gelatin hydrolysate from unicorn leatherjacket skin as affected by prior autolysis. Int. Aquat. Res. 7, 101–114 (2015)

    Article  Google Scholar 

  22. Nemati, M., Huda, N., Ariffin, F.: Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. Int. Food Res. J. 24, 2419–2426 (2017)

    Google Scholar 

  23. Hawkins, C.L., Davies, M.J.: Detection, identification and quantification of oxidative protein modifications. J. Biol. Chem. 294, 19683–19708 (2019). https://doi.org/10.1074/jbc.rev119.006217

    Article  Google Scholar 

  24. Djimeli, C.L., Arfao, A.T., Ewoti, O.V.N., Nougang, M.E., Moungang, M.L., Bricheux, G., Nola, M., Ngando, T.S.: Mixture of sodium hypochlorite and hydrogen peroxide on adhered Aeromonas hydrophila to solid substrate in water: impact of concentration and assessment of the synergistic effect. Int. J. Bacteriol. (2014). https://doi.org/10.1155/2014/121367

    Article  Google Scholar 

  25. Gatellier, Ph., Kondjoyan, A., Portanguen, S., Santé-Lhoutellier, V.: Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality. Meat Sci. 85, 645–650 (2010). https://doi.org/10.1016/j.meatsci.2010.03.018

    Article  Google Scholar 

  26. Benjakul, S., Lertittikul, W., Bauer, F.: Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system. Food Chem. 93, 189–196 (2005). https://doi.org/10.1016/j.foodchem.2004.10.019

    Article  Google Scholar 

  27. Fellows, P.J.: Properties of food and principles of processing. Food Process. Technol. (2017). https://doi.org/10.1016/b978-0-08-100522-4.00001-8

    Article  Google Scholar 

  28. Kristoffersen, K.A., Liland, K.H., Böcker, U., Wubshet, S.G., Lindberg, D., Horn, S.J., Afseth, N.K.: FTIR-based hierarchical modeling for prediction of average molecular weights of protein hydrolysates. Talanta 205, 120084 (2019). https://doi.org/10.1016/j.talanta.2019.06.084

    Article  Google Scholar 

  29. Sukumaran, S.: Protein secondary structure elucidation using FTIR spectroscopy. APPLICATION NOTE AN52985, Thermo Fisher Scientific Inc. BioCel. www.thermofisher.com/FTIR (2017). Accessed 2 Mar 2020

  30. Singh, B.R., DeOliveira, D.B., Fu, F.-N., Fuller, M.P.: Fourier transform infrared analysis of amide III bands of proteins for the secondary structure estimation. Biomol. Spectrosc. III, 47–55 (1993). https://doi.org/10.1117/12.145242

    Article  Google Scholar 

  31. Cai, S., Singh, B.R.: A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 43, 2541–2549 (2004). https://doi.org/10.1021/bi030149y

    Article  Google Scholar 

  32. Pal, A., Paul, S., Choudhury, A.R., Bala, V.K., Das, M., Sinha, A.: Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater. Lett. 203, 89–92 (2017). https://doi.org/10.1016/j.matlet.2017.05.103

    Article  Google Scholar 

  33. Venkatesan, J., Kim, S.K.: Effect of temperature on isolation and characterization of hydroxyapatite from tuna (Thunnus obesus) bone. Materials 3, 4761–4772 (2010). https://doi.org/10.3390/ma3104761

    Article  Google Scholar 

  34. Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mat. Sci. Eng. C32, 478–486 (2012). https://doi.org/10.1016/j.msec.2011.11.021

    Article  Google Scholar 

  35. Onipe, O.O., Beswa, D., Jideani, A.I.O.: Effect of size reduction on colour, hydration and rheological properties of wheat bran. Food Sci. Technol. 37, 389–396 (2017). https://doi.org/10.1590/1678-457X.12216

    Article  Google Scholar 

  36. Boz, H.: Effect of flour and sugar particle size on the properties of cookie dough and cookie. Czech J. Food Sci. 37, 120–127 (2019). https://doi.org/10.17221/161/2017-CJFS

    Article  Google Scholar 

  37. Turhan, S., Ustun, N.S., Altunkaynak, T.B.: Effect of cooking methods on total and heme iron contents of anchovy (Engraulis encrasicholus). Food Chem. 88, 169–172 (2004). https://doi.org/10.1016/j.foodchem.2004.01.026

    Article  Google Scholar 

  38. Purchas, R.W., Rutherfurd, S.M., Pearce, P.D., Vather, R., Wilkinson, B.H.P.: Cooking temperature effects on the forms of iron and levels of several other compounds in beef semitendinosus muscle. Meat Sci. 68, 201–207 (2004). https://doi.org/10.1016/j.meatsci.2004.02.018

    Article  Google Scholar 

  39. Sunil, B.R., Jagannatham, M.: Producing hydroxyapatite from fish bones by heat treatment. Mater. Lett. 185, 411–414 (2016). https://doi.org/10.1016/j.matlet.2016.09.039

    Article  Google Scholar 

  40. Habibah T.U., Salisbury H.G.: Hydroxyapatite dental material. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-https://www.ncbi.nlm.nih.gov/books/NBK513314/ (2019). Accessed 2 Mar 2020

  41. Bennett, T., Desmond, A., Harrington, M., McDonagh, D., FitzGerald, R., Flynn, A., Cashman, K.D.: The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. Br. J. Nutr. 83, 673–680 (2000). https://doi.org/10.1017/s0007114500000854

    Article  Google Scholar 

  42. Jung, W.K., Lee, B.J., Kim, S.K.: Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br. J. Nutr. 95, 124–128 (2006). https://doi.org/10.1079/BJN20051615

    Article  Google Scholar 

  43. Kerstetter, J.E., O’Brien, K.O., Caseria, D.M., Wal, D.E., Insogna, K.L.: The Impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J. Clin. Endocrinol. Metab. 90, 26–31 (2005). https://doi.org/10.1210/jc.2004-0179

    Article  Google Scholar 

  44. Lorieau, L., Roux, L.L., Gaucheron, F., Ligneul, A., Hazart, E., Dupont, D., Floury, J.: Bioaccessibility of four calcium sources in different whey-based dairy matrices assessed by in vitro digestion. Food Chem. 245, 454–462 (2018). https://doi.org/10.1016/j.foodchem.2017.10.108

    Article  Google Scholar 

  45. Zhang, B., Coon, C.: The relationship of calcium intake, source, size, solubility in vitro and in vivo, and gizzard limestone retention in laying hens. Poult. Sci. 76, 1702–1706 (1997). https://doi.org/10.1093/ps/76.12.1702

    Article  Google Scholar 

  46. Kismiati, S., Yuwanta, T., Zuprizal, S.: The microstructure of egg shell waste treated with h3po4, in vitro solubility in different particle size and the using effect on the egg shell quality of laying hens. Int. J. Poult. Sci. 12, 421–425 (2013). https://doi.org/10.3923/ijps.2013.421.425

    Article  Google Scholar 

Download references

Acknowledgements

The scholarship from Diponegoro University, Indonesia, to Ima Wijayanti is acknowledged. Prince of Songkla University (Grant No AGR6302013N) was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soottawat Benjakul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijayanti, I., Benjakul, S. & Sookchoo, P. Preheat-Treatment and Bleaching Agents Affect Characteristics of Bio-calcium from Asian Sea Bass (Lates calcarifer) Backbone. Waste Biomass Valor 12, 3371–3382 (2021). https://doi.org/10.1007/s12649-020-01224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01224-w

Keywords

Navigation