Skip to main content
Log in

Isolation and Identification of Magnusiomyces capitatus as a Lipase-Producing Yeast from Olive Mill Wastewater

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Olive mill wastewaters (OMW) are effluents originated from olive oil extraction. As an oil-rich residue, OMW is a potential source of lipase-producing microorganisms and a complex medium potentially suitable for lipase production. The aim of the present study was to isolate yeasts with the ability to produce extracellular lipases from OMW. Thirty-two yeast isolates were obtained and screening for esterase/lipase activity using rapid plate detection methods allowed the selection of five isolates. Subsequently, extracellular lipolytic activity was determined in shake-flasks, and the best activity was found in the isolate JT5 (0.85 U/mL). This isolate was identified as Magnusiomyces capitatus by DNA sequencing. Growth and lypolytic activities by M. capitatus JT5 were assessed in undiluted OMW, and optimization of lipase production was achieved by a positive interaction of two factors (oxygen availability and nitrogen concentration). The highest lipase activity (1.4 U/mL) was obtained at NH4Cl concentration of 2.8 g/L and kLa of 0.65 min−1. The growth of M. capitatus JT5 in a stirred tank bioreactor, using undiluted OMW, allowed the improvement of lipase production (up to 3.96 U/mL) by increasing olive oil concentration in the medium, under the selected conditions of nitrogen concentration and oxygen availability. This study highlighted the isolate M. capitatus JT5 as a lipase-producing microorganism that is able to grow in undiluted OMW under controlled conditions. Results obtained in shake-flasks have been reproduced satisfactorily in the stirred tank bioreactor.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryu, H.S., Kim, H.K., Choi, W.C., et al.: New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70, 321–326 (2006)

    Article  Google Scholar 

  2. Gupta, N., Shai, V., Gupta, R.: Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor. Process Biochem. 42, 518–526 (2007)

    Article  Google Scholar 

  3. Franken, L.P.G., Marcon, N.S., Treichel, H., et al.: Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol. 3, 511–520 (2010)

    Article  Google Scholar 

  4. Salihu, A., Alam, M.Z., AbdulKarim, M.I., Salleh, H.M.: Lipase production: an insight in the utilization of renewable agricultural residues. Resour. Conserv. Recycl. 58, 36–44 (2012)

    Article  Google Scholar 

  5. Yousuf, A., Sannino, F., Addorisio, V., Pirozzi, D.: Microbial conversion of olive mill wastewaters into lipids suitable for biodiesel production. J. Agric. Food Chem. 58, 8630–8635 (2010)

    Article  Google Scholar 

  6. Gog, A., Roman, M., Toşa, M., et al.: Biodiesel production using enzymatic transesterification—current state and perspectives. Renew. Energ 39, 10–16 (2012)

    Article  Google Scholar 

  7. Kuo, T.-C., Shaw, J.-F., Lee, G.-C.: Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes. Bioresour. Technol. 192, 54–59 (2015)

    Article  Google Scholar 

  8. Griebeler, N., Polloni, A.E., Remonatto, D., et al.: Isolation and screening of lipase-producing fungi with hydrolytic activity. Food Bioprocess Technol. 4, 478–586 (2011)

    Article  Google Scholar 

  9. Jaeger, K.-E., Eggert, T.: Lipases for biotechnology. Curr. Opin. Biotechnol. 13(4), 390–397 (2002)

    Article  Google Scholar 

  10. Jaeger, K.-E., Eggert, T.: Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Biotechnol. 15(4), 305–313 (2004)

    Article  Google Scholar 

  11. Burkert, J.F.M., Maldonado, R.R., Maugeri, F., Rodrigues, M.I.: Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. J. Chem. Technol. Biotechnol. 80, 61–67 (2005)

    Article  Google Scholar 

  12. Yan, J., Yan, Y.: Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Appl. Microbiol. Biotechnol. 78, 431–439 (2008)

    Article  Google Scholar 

  13. Asses, N., Ayed, L., Bouallagui, H., Ben Rejeb, I., et al.: Use of Geotrichum candidum for olive mill wastewater treatment in submerged and static culture. Bioresour. Technol. 100, 2182–2188 (2009)

    Article  Google Scholar 

  14. Maldonado, R.R., Macedo, G.A., Rodrigues, M.I.: Lipase production using microorganisms from different agro-industrial by-products. Int. J. Appl. Sci. Technol. 4, 108–115 (2014)

    Google Scholar 

  15. Miranda, O.A., Salgueiro, A.A., Pimentel, M.C.B., et al.: Lipase production by a Brazilian strain of Penicillium citrinum using an industrial residue. Bioresour. Technol. 69, 145–147 (1999)

    Article  Google Scholar 

  16. Menoncin, S., Domingues, N.M., Freire, D.M.G., et al.: Study of the extraction, concentration and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food Bioprocess Technol. 3, 537–544 (2010)

    Article  Google Scholar 

  17. Papagianni, M.: An evaluation of the proteolytic and lipolytic potential of Penicillium spp. isolated from traditional Greek sausages in submerged fermentation. Appl. Biochem. Biotechnol. 172, 767–775 (2014)

    Article  Google Scholar 

  18. Prazeres, J.N., Cruz, J.A.B., Pastore, G.M.: Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz. J. Microbiol. 37, 505–509 (2006)

    Article  Google Scholar 

  19. Oliveira, B.H., Coradi, G.V., Attili-Angelis, D., et al.: Comparison of lipase production on crambe oil and meal by Fusarium sp. (Gibberella fujikuroi complex). Eur. J. Lipid Sci. Technol. 115, 1413–1425 (2013)

    Article  Google Scholar 

  20. De Felice, B., Pontecorvo, G., Carfagna, M.: Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida. Acta Biotechnol. 17, 231–239 (1997)

    Article  Google Scholar 

  21. Pereira-Meirelles, F.V., Rocha-Leão, N.H.M., Sant’Anna Jr., G.L.: A stable lipase from Candida lipolytica: cultivation conditions and crude enzyme characteristics. Appl. Biochem. Biotechnol. 63–65, 3–85 (1997)

    Google Scholar 

  22. Lanciotti, R., Gianotti, A., Baldi, D., et al.: Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour. Technol. 96, 317–322 (2005)

    Article  Google Scholar 

  23. Gonçalves, C., Oliveira, F., Pereira, C., Belo, I.: Fed-batch fermentation of olive mill wastewaters for lipase production. J. Chem. Technol. Biotechnol. 87, 1215–1218 (2012)

    Article  Google Scholar 

  24. Moftah, O.A.S., Grbavčić, S.Ž., Moftah, W.A.S., et al.: Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J. Serb. Chem. Soc. 78(6), 781–794 (2013)

    Article  Google Scholar 

  25. Larios, A., García, H.S., Oliart, R.M., Valerio-Alfaro, G.: Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl. Microbiol. Biotechnol. 65, 373–376 (2004)

    Article  Google Scholar 

  26. Sharma, R., Chisti, Y., Chand, U.: Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19(8), 627–662 (2001)

    Article  Google Scholar 

  27. Brozzoli, V., Crognale, S., Sampedro, I., et al.: Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresour. Technol. 100, 3395–3402 (2009)

    Article  Google Scholar 

  28. Salihu, A., Alam, M.Z., AbdulKarim, M.I., Salleh, H.M.: Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. J. Mol. Catal. B Enzym. 69, 66–73 (2011)

    Article  Google Scholar 

  29. D’Annibale, A., Sermanni, G.G., Federici, F., Petruccioli, M.: Olive mill wastewaters: a promising substrate for microbial lipase production. Bioresour. Technol. 97, 1828–1833 (2006)

    Article  Google Scholar 

  30. Crognale, S., D’Annibale, A., Federici, F., Fenice, M., et al.: Olive oil mill wastewater valorization by fungi. J. Chem. Technol. Biotechnol. 81, 1547–1555 (2006)

    Article  Google Scholar 

  31. Lopes, M., Araujo, C., Aguedo, M., et al.: The use of olive mill wastewater by wild type Yarrowia lipolytica strains: medium supplementation and surfactant presence effect. J. Chem. Technol. Biotechnol. 84, 533–537 (2009)

    Article  Google Scholar 

  32. Abrunhosa, L., Oliveira, F., Dantas, D., et al.: Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst. Eng. 36, 285–291 (2013)

    Article  Google Scholar 

  33. APHA: Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC (2005)

    Google Scholar 

  34. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)

    Google Scholar 

  35. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  36. Kurtzman, C.P., Fell, J.W., Boekhout, T., Robert, V.: Methods for the isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman, C.P., Fell, J.W., Boekhout, T. (eds.) The yeasts—a taxonomic study, 5th edn, pp. 87–110. Amsterdam, Elsevier (2011)

    Chapter  Google Scholar 

  37. Gopinath, S.C.B., Anbu, P., Hilda, A.: Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 46(2), 119–126 (2005)

    Article  Google Scholar 

  38. Cihangir, N., Sarikaya, E.: Investigation of lipase production by a new isolate of Aspergillus sp. World J. Microbiol. Biotechnol. 20(2), 193–197 (2004)

    Article  Google Scholar 

  39. Singh, R., Gupta, N., Goswami, V., Gupta, R.: A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70, 679–682 (2006)

    Article  Google Scholar 

  40. Cheng, H., Jiang, N.: Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol. Lett. 28, 55–59 (2006)

    Article  Google Scholar 

  41. O’Donnell, K.: Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr. Genet. 22(3), 213–220 (1992)

    Article  Google Scholar 

  42. Tamura, K., Peterson, D., Peterson, N., Stecher, G., et al.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  Google Scholar 

  43. Doehlert, D.H.: Uniform shell designs. Appl. Stat. 19, 231–239 (1970)

    Article  Google Scholar 

  44. Wise, W.S.: The measurement of the aeration of culture media. J. Gen. Microbiol. 5, 167–177 (1951)

    Article  Google Scholar 

  45. Gomes, N.C., Gonçalves, C., Garcia-Roman, M., et al.: Optimization of a colorimetric assay for yeast lipase activity in complex systems. Anal. Methods 3, 1008–1013 (2011)

    Article  Google Scholar 

  46. Gonçalves, C., Pereira, C., Alves, M., et al.: Olive mill wastewater as a renewable resource. Environ. Eng. Manag. J. 9, 319–325 (2010)

    Article  Google Scholar 

  47. Rincón, B., Raposo, F., Borja, R., et al.: Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates. J. Biotechnol. 121(4), 534–543 (2006)

    Article  Google Scholar 

  48. Morillo, J.A., Aguilera, M., Ramos-Cormenzana, A., Monteoliva-Sánchez, M.: Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr. Microbiol. 53(3), 189–193 (2006)

    Article  Google Scholar 

  49. Ben Sassi, A., Boularbah, A., Jaouad, A., et al.: A comparison of olive oil mill wastewaters (OMW) from three different processes in Morocco. Process Biochem. 41, 74–78 (2006)

    Article  Google Scholar 

  50. Hasan, F., Shah, A.A., Hameed, A.: Methods for detection and characterization of lipases: a comprehensive review. Biotechnol. Adv. 27(6), 782–798 (2009)

    Article  Google Scholar 

  51. Panda, T., Gowrishankar, B.S.: Production and applications of esterases. Appl. Microbiol. Biotechnol. 67(2), 160–169 (2005)

    Article  Google Scholar 

  52. Immanuel, G., Esakkiraj, P., Jebadhas, A., et al.: Investigation of lipase production by milk isolate Serratia rubidaea. Food Technol. Biotechnol. 46(1), 60–65 (2008)

    Google Scholar 

  53. Treichel, H., de Oliveira, D., Mazutti, M.A., et al.: A review on microbial lipases production. Food Bioprocess Technol. 3(2), 182–196 (2009)

    Article  Google Scholar 

  54. Salihu, A., Alam, M.Z., Abdulkarim, M.I., Salleh, H.M.: Suitability of using palm oil mill effluent as a medium for lipase production. Afr. J. Biotechnol. 10(11), 2044–2052 (2011)

    Google Scholar 

  55. Holmberg, S., Kielland-Brandt, M.C.: A mutant of Saccharomyces cerevisiae temperature sensitive for flocculation. Influence of oxygen and respiratory deficiency on flocculence. Carlsberg Res. Commun. 43(1), 37–47 (1978)

    Article  Google Scholar 

  56. Sampermans, S., Mortier, J., Soares, E.V.: Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J. Appl. Microbiol. 98(2), 525–531 (2005)

    Article  Google Scholar 

  57. Brejová, B., Lichancová, H., Brázdovič, F., et al.: Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr. Genet. 65, 539–560 (2019)

    Article  Google Scholar 

  58. Yamada-Onodera, K., Fukui, M., Tani, Y.: Purification and characterization of alcohol dehydrogenase reducing N-benzyl-3-pyrrolidinone from Geotrichum capitatum. J. Biosci. Bioeng. 103(2), 174–178 (2007)

    Article  Google Scholar 

  59. Sayadi, S., Allouche, N., Jaoua, M., Aloui, F.: Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Bioprocess Biochem. 35, 725–735 (2000)

    Article  Google Scholar 

  60. Ergul, F.E., Sargin, S., Ongen, G., Sukan, F.V.: Dephenolisation of olive mill wastewater using adapted Trametes versicolor. Int. Biodeter. Biodegr. 63, 1–6 (2009)

    Article  Google Scholar 

  61. Gonçalves, C., Lopes, M., Ferreira, J.P., Belo, I.: Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresour. Technol. 100, 3759–3763 (2009)

    Article  Google Scholar 

  62. Gonçalves, C., Lopes, M., Alves, M., Belo, I.: Use of olive mill wastewater by lipolytic yeasts. J. Biotechnol. 131, S179 (2007)

    Article  Google Scholar 

  63. Abdelmoez, W., Mostafa, N.A., Mustafa, A.: Utilization of oleochemical industry residues as substrates for lipase production for enzymatic sunflower oil hydrolysis. J. Clean. Prod. 59, 290–297 (2013)

    Article  Google Scholar 

  64. Thabet, H.M., Pasha, C., Ahmed, M.M., Linga, V.R.: Isolation of novel lipase producing Sporobolomyces salmonicolor OVS8 from oil mill spillage and enhancement of lipase production. Jordan J. Biol. Sci. 5(4), 301–306 (2012)

    Google Scholar 

  65. Dimitrijević, A., Veličković, D., Bezbradica, D., et al.: Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents. J. Serb. Chem. Soc. 76(8), 1081–1092 (2011)

    Article  Google Scholar 

  66. Fadil, K., Chahlaoui, A., Ouahbi, A., et al.: Aerobic biodegradation and detoxification of wastewaters from the olive oil industry. Int. Biodeter. Biodegr. 51, 37–41 (2003)

    Article  Google Scholar 

  67. Deming, S.N., Morgan, S.L.: Experimental design: a chemometric approach, in data handling in science and technology, vol. 11, 2nd edn. Elsevier, New York (1993)

    Google Scholar 

  68. Alonso, F.O.M., Oliveira, E.B.L., Dellamora-Ortiz, G.M., Pereira-Meirelles, F.V.: Improvement of lipase production at different stirring speeds and oxygen levels. Braz. J. Chem. Eng. 22, 9–18 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was prepared in the framework of the project “Mediterranean Cooperation in the Treatment and Valorisation of Olive Mill Wastewater (MEDOLICO)” which is funded by the European Union under the “ENPI Cross-Border Cooperation Mediterranean Sea Basin Programme”. MEDOLICO total budget is 1.9 million Euro and it is co-financed through the European Neighbourhood and Partnership Instrument (90%) and national funds of the countries participating in the project (10%). The authors wish to thank Margarida Monteiro for important support with yeast cultures and maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Eusébio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, V., Fonseca, C., Lopes da Silva, T. et al. Isolation and Identification of Magnusiomyces capitatus as a Lipase-Producing Yeast from Olive Mill Wastewater. Waste Biomass Valor 11, 3207–3221 (2020). https://doi.org/10.1007/s12649-019-00725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00725-7

Keywords

Navigation