Skip to main content

Advertisement

Log in

A Feasible Application of Circular Economy: Spent Grain Energy Recovery in the Beer Industry

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The generation of residual streams and wastes is a common constant in all productive processes. The brewing sector generates a large quantity of residual by-products which can be sustainably reused within the industry to contribute to cover the energy requirement of the process and at the same time to contribute to minimize the amount of waste that is sent to landfills. In this paper the feasibility and advantages of incorporating a stage for energy recovery from some of the solid wastes generated during the process as part of the circular economy approach is presented. La Cibeles, a local small size beer process is taken as a real example. In a brewing process the main wastes that are produced are: grain husks, yeast and CO2. Out of the three, the most important one is the grain husk or brewers’ spent grain that can make around 85% of the total waste of a brewery. The results presented in this study show that, by gasification of brewers’ spent grain, not only the final volume of the residue to be disposed is considerably minimised, but also it is possible to obtain a net economic saving of around 22% in the consume of fossil fuels used in the brewing process when the syngas produced is used for heat generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The Brewers of Europe: The Contribution made by Beer to the European Economy. In. Region Plan Policy Research and EY (2013)

  2. Kawa, A., Luczyk, I.: CSR in supply chains of brewing industry. In: Golinska, P., Kawa, A. (eds.) Technology Management for Sustainable Production and Logistics. EcoProduction, pp. 97–118. Springer, Berlin (2015)

    Chapter  Google Scholar 

  3. Kerby, C., Vriesekoop, F.: An overview of the utilization of brewery by-products as generated by british craft breweries. Beverages 3(24), 1–12 (2017). https://doi.org/10.3390/beverages3020024

    Article  Google Scholar 

  4. El economista: la producción de cervezas artesanales en España se disparó un 36% en 2017. https://www.eleconomista.es/distribucion/noticias/9158845/05/18/Economia-Consumo-La-produccion-de-cervezas-artesanales-se-dispara-en-Espana-un-36-en-2017.html. (2018). Accessed Jan 2019

  5. Olajire, A.A.: The brewing industry and environmental challenges. J. Clean. Prod. (2012). https://doi.org/10.1016/j.jclepro.2012.03.003

    Article  Google Scholar 

  6. Agency, E.E.: Circular economy in Europe. Developing the Knowledge Base. In., vol. EEA Report No 2/2016, p. 42. EEA, Luxembourg (2016)

  7. European Commission: The opportunities to business of improving resource efficiency. Final Report. In: AMEC Environment & Infrastructure and Bio Intelligence Service (2013)

  8. Association, B.: Solid Waste Reduction Manual. In: Brewers Association,

  9. European Commission: The role of waste-to-energy in the circular economy. In: (vol. COM, p. 11). European Commission (2017)

  10. Mussatto, S.I.: Brewer’s spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric. 94(7), 1264–1275 (2014). https://doi.org/10.1002/jsfa.6486

    Article  Google Scholar 

  11. dos Santos Mathias, T.R., de Mello, P.P.M., Sérvulo, E.F.C.: Solid wastes in brewing process: a review. J. Brew. Distill 5(1), 1–19 (2014). https://doi.org/10.5897/jbd2014.0043

    Article  Google Scholar 

  12. Weger, A., Jung, R., Stenzel, F., Hornung, A.: Optimized energetic usage of brewers’ spent grains. Chem. Eng. Technol. 40(2), 306–312 (2017). https://doi.org/10.1002/ceat.201600186

    Article  Google Scholar 

  13. Mejores técnicas disponibles en el sector cervecero. In: AINIA-Instituto Tecnológico Agroalimentario, p. 119

  14. Mussatto, S.I., Dragone, G., Roberto, I.C.: Brewers’ spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43(1), 1–14 (2006). https://doi.org/10.1016/j.jcs.2005.06.001

    Article  Google Scholar 

  15. Pérez, V., Murillo, J.M., Bados, R., Esteban, L.S., Ramos, R., Sánchez, J.M.: Preparation and gasification of brewers’ spent grains. In: 5th International Conference on Sustainable Solid Waste, Athens, 2017

  16. Phyllis2. Database for biomass and waste. ECN. Accessed 2018

  17. Torreiro, Y., Ortiz, I., Molina, G., Maroño, M., Pérez, V., Murillo, J.M., Ramos, R., Fernández, M., García, S., Sánchez, J.M.: Thermochemical assessment of Nicotiana glauca, Panicum virgatum and Elytrigia elongata as fuels for energy recovery through gasification. Fuel 225, 71–79 (2018). https://doi.org/10.1016/j.fuel.2018.03.149

    Article  Google Scholar 

  18. Jenkins, B.M., Baxter, L.L., Miles, T.R., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. 54(1), 17–46 (1998). https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  19. Thomas, K.R., Rahman, P.K.S.M.: Brewery wastes. Strategies for sustainability. A review. ASP Appl Biol 8, 147–153 (2006)

    Google Scholar 

  20. Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, Sr, Ahrenfeldt, J., Henriksen, U.B.: Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11), 3285–3290 (2011)

    Article  Google Scholar 

  21. Stelte, W., Clemons, C., Holm, J.K., Sanadi, A.R., Ahrenfeldt, J., Shang, L., Henriksen, U.B.: Pelletizing properties of torrefied spruce. Biomass Bioenerg. 35(11), 4690–4698 (2011)

    Article  Google Scholar 

  22. Zafar, S.: Biomass Pelletization Process. (2018)

  23. Pascual, L.S.E.: Fuel preparation. Paper presented at the summer school: advanced concepts and process schemes for CO2 free fluidised and entrained bed co-gasification of coals, Madrid, 3–6 July

  24. Pirraglia, A., Gonzalez, R., Saloni, D.: Wood pellets feasibility. Bioresource 5(4), 2374–2390 (2010)

    Google Scholar 

  25. Higman, C., Burgt, M.V.D.: Gasification, 2nd edn. Gulf Professional Publishing, Amsterdam (2008)

    Google Scholar 

  26. Sikarwar, V.S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N., Anthony, E.J., Fennell, P.S.: An overview of advances in biomass gasification. Energy Environ. Sci. 9(10), 2939–2977 (2016). https://doi.org/10.1039/C6EE00935B

    Article  Google Scholar 

  27. Narváez, I., Orío, A., Aznar, M.P., Corella, J.: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind. Eng. Chem. Res. 35(7), 2110–2120 (1996). https://doi.org/10.1021/ie9507540

    Article  Google Scholar 

  28. Toledo, J.M., Corella, J., Molina, G.: Catalytic hot gas cleaning with monoliths in biomass gasification in fluidized beds. 4. Performance of an advanced, second-generation, two-layers-based monolithic reactor. Ind. Eng. Chem. Res. 45(4), 1389–1396 (2006)

    Article  Google Scholar 

  29. Arena, U., Di Gregorio, F., Santonastasi, M.: A techno-economic comparison between two design configurations for a small scale biomass-to-energy gasification based system. Chem. Eng. J. 162, 580–590 (2010)

    Article  Google Scholar 

  30. Sanz, A., Corella, J.: Modeling circulating fluidized bed biomass gasifiers Results from a pseudo-rigorous 1-dimensional model for stationary state. Fuel Process. Technol. 87(3), 247–258 (2006). https://doi.org/10.1016/j.fuproc.2005.08.003

    Article  Google Scholar 

  31. Nikoo, M.B., Mahinpey, N.: Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenerg. 32, 1245 (2008)

    Article  Google Scholar 

  32. Sahoo, A., Ram, D.K.: Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse. Energy 90, 1420–1425 (2015). https://doi.org/10.1016/j.energy.2015.06.096

    Article  Google Scholar 

  33. The utilisation of brewery waste (1923) https://doi.org/10.1002/j.2050-0416.1923.tb02583.x.

  34. Karatas, H., Olgun, H., Akgun, F.: Experimental results of gasification of waste tire with air&CO2, air & steam and steam in a bubbling fluidized bed gasifier. Fuel Process. Technol. 102, 166–174 (2012). https://doi.org/10.1016/j.fuproc.2012.04.013

    Article  Google Scholar 

  35. Garcia, L., Salvador, M.L., Arauzo, J., Bilbao, R.: CO2 as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst. Fuel Process. Technol. 69(2), 157–174 (2001). https://doi.org/10.1016/S0378-3820(00)00138-7

    Article  Google Scholar 

  36. Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S.: A review on biomass gasification syngas cleanup. Appl. Energ. 155, 294–307 (2015). https://doi.org/10.1016/j.apenergy.2015.05.095

    Article  Google Scholar 

  37. Woolcock, P.J., Brown, R.C.: A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg. 52, 54–84 (2013). https://doi.org/10.1016/j.biombioe.2013.02.036

    Article  Google Scholar 

  38. Balas, M., Lisy, M., Skala, Z., Pospisil, J.: Wet scrubber for cleaning of syngas from biomass gasification. In: Advances in Environmental Sciences, Development and Chemistry, Santorini Island, Greece, July 17–21, 2014, pp. 195–201 (2014)

  39. Boer, E.D., Hoen, M.T.: Scrubbers—an economic and ecological assessment. In: Delft, C. (ed.). p. 45, NABU, Delft (2015)

  40. Eurostat: Estadísticas de los precios del gas natural. (2018). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics/es#Precios_del_gas_natural_para_consumidores_no_dom.C3.A9sticos. Accessed Jan 2019

  41. Ministerio de Industria, Comercio y Turismo: Precio neto de la electricidad para uso doméstico y uso industrial. (2018). https://www.mincotur.gob.es/es-ES/IndicadoresyEstadisticas/DatosEstadisticos/IV.%20Energ%C3%ADa%20y%20emisiones/IV_12.pdf. Accessed Jan 2019

  42. Ministerio de Industria, Comercio y Turismo: EVOLUCIÓN PRECIOS DEL GASÓLEO. (2019). http://www.cetm.es/principal/carburantes/gasoleos/datos.asp. Accessed Jan 2019

Download references

Acknowledgements

The authors wish to thank the Regional Government of Madrid for its financial support through the RETOPROSOST Project (P2013/MAE-2907). We also thank La Cibeles, S. L. for providing the data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ortiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, I., Torreiro, Y., Molina, G. et al. A Feasible Application of Circular Economy: Spent Grain Energy Recovery in the Beer Industry. Waste Biomass Valor 10, 3809–3819 (2019). https://doi.org/10.1007/s12649-019-00677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00677-y

Keywords

Navigation