Skip to main content
Log in

Valorization of Kraft Lignin of Different Molecular Weights as Surfactant Agent for the Oil Industry

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

After cellulose, lignin is the second most abundant biopolymer in the vegetable world. Since lignin is a natural phenolic polymer, there are a variety of potential products obtainable by its chemical modification, including surfactants. In this regard, lignin is of great interest because represent a byproduct of pulp industries for papermaking; however, this byproduct can be harnessed for obtaining aromatic derivatives of industrial interest. In this work, alkali lignin derivatives of different molecular weights were synthesized from lignin fractions from Pinus caribaea obtained by ultrafiltration. Lignin and lignin-fractions were modified with succinic anhydride (SA), and dodecyl-succinic anhydride (DSA) under microwave heating. The reaction was monitored by Fourier Transform Infrared Spectroscopy. The surface activity of lignin, and lignin-derivatives was evaluated through surface tension measurements, while the stability of suspensions and emulsions was evaluated by the volumetric separation method. The lignin fractions, and the esterified derivatives were obtained in very short reaction times (90–110 s) using a mixture of acetonitrile/ethanol. The lignin-derivatives showed higher surface activity in comparison to the neat lignin. Derivatives prepared from the lower molecular weight fraction by using DSA showed the best emulsifying properties. Lignin-derivatives also showed significant dispersing properties in comparison to a commercial dispersant (lignosulfonate). The best dispersant properties were obtained from the higher molecular weight ultrafiltered lignin fraction esterified with SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gellerstedt, G., Henriksson, G.: Lignins: major sources, structure and properties. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 201–224. Elsevier Ltd., Oxford (2008)

    Chapter  Google Scholar 

  2. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M.: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3, 29–60 (2004)

    Article  Google Scholar 

  3. Chakar, F.S., Raguaskas, A.J.: Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141 (2004)

    Article  Google Scholar 

  4. Lora, J.: Industrial commercial lignins: sources, properties and applications. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 225–241. Elsevier Ltd., Oxford (2008)

    Chapter  Google Scholar 

  5. Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J.: Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200 (2016)

    Article  Google Scholar 

  6. He, W., Fatehi, P.: Preparation of sulfomethylated softwood kraft lignin as a dispersant for cement admixture. RSC Adv. 5, 47031–47039 (2015)

    Article  Google Scholar 

  7. Konduri, M., Kong, F., Fatehi, P.: Production of carboxymethylated lignin and its application as a dispersant. Eur. Polym. J. 70, 371–383 (2015)

    Article  Google Scholar 

  8. Cerrutti, B.M., de Souza, C.S., Castellan, A., Ruggiero, R., Frollini, E.: Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Ind. Crop. Prod. 36, 108–115 (2012)

    Article  Google Scholar 

  9. Qin, Y., Yang, D., Qiu, X.: Hydroxypropyl sulfonated lignin as dye dispersant: effect of average molecular weight. ACS Sustain. Chem. Eng. 3, 3239–3244 (2015)

    Article  Google Scholar 

  10. Aso, T., Koda, K., Kubo, S., Yamada, T., Nakajima, I., Uraki, Y.: Preparation of novel lignin-based cement dispersants from isolated lignins. J. Wood Chem. Technol. 33, 286–298 (2013)

    Article  Google Scholar 

  11. Li, S., Willoughby, J., Rojas, O.J.: Oil-in-water emulsions stabilized by carboxymethylated lignins: properties and energy prospects. ChemSusChem 9, 2460–2469 (2016)

    Article  Google Scholar 

  12. Li, S., Ogunkoya, D., Fang, T., Willoughby, J., Rojas, O.J.: Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils. J. Colloid Interf. Sci. 482, 27–38 (2016)

    Article  Google Scholar 

  13. Zhang, Z., Zhang, Y., Lin, Z., Mulyadi, A., Mu, W., Deng, Y.: Butyric anhydride modified lignin and its oil-water interfacial properties. Chem. Eng. Sci. 165, 55–64 (2017)

    Article  Google Scholar 

  14. Neale, G., Hornof, V., Chiwetelu, Ch: Importance of lignosulfonates in petroleum recovery operations. Can. J. Chem. 59, 1938–1943 (1981)

    Article  Google Scholar 

  15. Nelson, R.C.: Application of surfactants in the petroleum industry. J. Am. Oil Chem. Soc. 59, 823–826 (1982)

    Article  Google Scholar 

  16. Wallberg, O., Jönsson, A.-S., Wimmerstedt, R.: Fractionation and concentration of kraft black liquor lignin with ultrafiltration. Desalination 154, 187–199 (2003)

    Article  Google Scholar 

  17. Rojas, O.J., Song, J., Argyropoulos, D.S., Bullón, J.: Lignin separation from kraft black liquors by tangencial ultrafiltration. La Chimica e I’Industria 88, 88–95 (2006)

    Google Scholar 

  18. Jönsson, A.-S., Nordin, A.-K., Wallberg, O.: Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem. Eng. Res. Des. 86, 1270–1280 (2008)

    Article  Google Scholar 

  19. Toledano, A., García, A., Mondragon, I., Labidi, J.: Lignin separation and fractionation by ultrafiltration. Sep. Purif. Technol. 71, 38–43 (2010)

    Article  Google Scholar 

  20. Hazwan Hussin, M., Rahim, A.A., Mohamad Ibrahim, M.N., Perrin, D., Brosse, N.: Enhanced properties of oil palm fronds (OPF) lignin fractions produced via tangential ultrafiltration technique. Ind. Crops Prod. 66, 1–10 (2015)

    Article  Google Scholar 

  21. Delgado, N., Ysambertt, F., Chávez, G., Bravo, B., Márquez, N., Bullón, J.: Microwave assisted synthesis of acylated lignin derivatives of different molar mass with possible surface activity. Avances en Ciencias e Ingeniería 3, 19–31 (2012)

    Google Scholar 

  22. Delgado, N., Ysambertt, F., Bravo, B., Chávez, G., Márquez, N.: Esterificación asistida por microondas de lignina de pino con anhídridos alquilsuccínicos. Revista Iberoamericana de Polímeros. 16, 28–42 (2015)

    Google Scholar 

  23. Gordobil, O., Egüés, I., Labidi, J.: Modification of Eucaliptus and Spruce organosolv lignins with fatty acids to use as filler in PLA. React. Funct. Polym. 104, 45–52 (2016)

    Article  Google Scholar 

  24. Botaro, V.R., Da Silva Curvelo, A.A.: Monodisperse lignin fractions as standards in size-exclusion analysis. Comparison with polystyrene standards. J. Chromatogr. A 1216, 3802–3806 (2009)

    Article  Google Scholar 

  25. Matsushita, Y., Yasuda, S.: Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour. Technol. 96, 465–470 (2005)

    Article  Google Scholar 

  26. Matsushita, Y., Imai, M., Iwatsuki, A., Fukushima, K.: The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials. Bioresour. Technol. 99, 3024–3028 (2008)

    Article  Google Scholar 

  27. Matsushita, Y., Inomata, T., Hasegawa, T., Fukushima, K.: Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass. Bioresour. Technol. 100, 1024–1026 (2009)

    Article  Google Scholar 

  28. Homma, H., Kubo, S., Yamada, T., Koda, K., Matsushita, Y., Uraki, Y.: Conversion of technical lignins to amphiphilic derivatives with high surface activity. J. Wood Chem. Technol. 30, 164–174 (2010)

    Article  Google Scholar 

  29. García, D.E.: Pinus pinaster (Ait.) Bark Tannin and Its Hydroxypropyl Derivatives as Building-blocks for Bio-material Design. PhD Thesis. Freiburg University, Freiburg, Germany, p. 215 (2014)

  30. Glasser, W.G., Davé, V., Frazier, C.E.: Molecular weight distribution of (semi-) commercial lignin derivatives. J. Wood Chem. Technol. 13, 545–559 (1993)

    Article  Google Scholar 

  31. García, D.E., Glasser, W.G., Pizzi, T.A., Osorio-Madrazo, A., Laborie, M.-P.: Synthesis and physicochemical properties of hydroxypropyl tannins from maritime pine bark (Pinus pinaster Ait.). Holzforschung 68, 411–418 (2014)

    Article  Google Scholar 

  32. Lisperguer, J., Perz, P., Urizar, S.: Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J. Chil. Chem. Soc. 54, 460–463 (2010)

    Google Scholar 

  33. Rana, R., Langenfeld-Heyser, R., Finkeldey, R., Polle, A.: FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 44, 225–242 (2010)

    Article  Google Scholar 

  34. Toledano, A., Erdocia, X., Serrano, L., Labidi, J.: Influence of extraction treatment on Olive tree (Olea europaea) pruning lignin structure. Environ. Prog. Sustain. 32, 1187–1194 (2013)

    Article  Google Scholar 

  35. Abdelaziz, O.Y., Hulteberg, C.P.: Physicochemical characterisation of technical lignins for their potential valorization. Waste Biomass Valor. 8, 859–869 (2017)

    Article  Google Scholar 

  36. Boeriu, C.G., Bravo, D., Gosselink, R.J.A., van Dam, J.E.G.: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20, 205–218 (2004)

    Article  Google Scholar 

  37. Xiao, B., Sun, X.F., Sun, R.: The chemical modification of lignins with succinic anhydride in aqueous systems. Polym. Degrad. Stabil. 71, 223–231 (2001)

    Article  Google Scholar 

  38. Thielemans, W., Wool, R.P.: Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromolecules 6, 1895–1905 (2005)

    Article  Google Scholar 

  39. Liu, C.F., Sun, R.C., Qin, M.H., Zhang, A.P., Ren, J.L., Ye, J., Luo, W., Cao, Z.N.: Succinoylation of sugarcane bagasse under ultrasound irradiation. Bioresour. Technol. 99, 1465–1473 (2008)

    Article  Google Scholar 

  40. Zhou, M., Pan, B., Yang, D., Lou, H., Qiu, X.: Rheological behavior investigation of concentrated coal-water suspension. J. Disper. Sci. Technol. 31, 838–843 (2010)

    Article  Google Scholar 

  41. Yang, D., Qiu, X., Zhou, M., Lou, H.: Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Convers. Manag. 48, 2433–2438 (2007)

    Article  Google Scholar 

  42. Zhou, M., Qiu, X., Yang, D., Lou, H.: Properties of different molecular weight sodium lignosulfonate fractions as dispersant of coal-water slurry. J. Disper. Sci. Technol. 27, 851–856 (2006)

    Article  Google Scholar 

  43. Zhou, M., Qiu, X., Yang, D., Lou, H., Ouyang, X.: High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin. Fuel Process. Technol. 88, 375–382 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratory of Mixing, Separation and Industrial Synthesis (LMSSI) of the Faculty of Engineering of the University of Los Andes (ULA), Merida-Venezuela, especially to professor Dr. Johnny Bullón, for the technical support (tangential UF equipment). In addition, authors like to thanks to “Proyecto Basal PFB-27”, Technological Development Unit (UDT), Concepción University, Chile, and to the Scientific, Humanistic and Technological Development Council (CONDES) of the University of Zulia (LUZ), Maracaibo-Venezuela (project CC-0260-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacarid Delgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, N., Ysambertt, F., Chávez, G. et al. Valorization of Kraft Lignin of Different Molecular Weights as Surfactant Agent for the Oil Industry. Waste Biomass Valor 10, 3383–3395 (2019). https://doi.org/10.1007/s12649-018-0352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0352-4

Keywords

Navigation