Skip to main content
Log in

Recycling Waste Seashells to Produce Calcitic Lime: Characterization and Wet Slaking Reactivity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present work aimed at valorizing marine bivalve shells. First, clam, mussel, edible cockle, wedge, razor, oyster, dog cockle and scallop shells wastes were thoroughly characterised for their mineralogical, chemical and thermal properties. Then, the materials were calcined at 1000 °C, milled and sieved to lower than 0.250 mm. The obtained calcium oxide was subjected to wet slaking test to evaluate its reactivity in the production of hydrated lime. The reactivity results of the calcined materials showed that, dog cockle (60 °C in 7:54 min:s) and edible cockle (60 °C in 9:20 min:s) can be classified in the most reactive class (R5) in which 60 °C is reached in less than 10 min. The remaining species were classified in the R4 class, reaching 60 °C between 10 and 25 min, with the lowest reactivity being found for oyster shell (60 °C in 19:09 min:s). Interestingly, the hydrated limes from seashells typically presented a white tonality superior that of the lime from commercial limestone used as reference. Overall, seashell wastes can be used in the production of lime, with several benefits, including, the inexistence of environmental impacts related to the exploitation of limestone on quarry, lesser energy spent in the comminution process, or, inexistence of disposal costs related with landfill tariff. These wastes could thus be used as raw materials in other industrial sector.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu, A., Ma, Y., Colfen, H.: Biomimetic mineralization. J. Mater. Chem. 17, 415–449 (2006)

    Article  Google Scholar 

  2. Kennedy, W.J., Taylor, J.D., Hall, A.: Environmental and biological controls on bivalve shell mineralogy. Biol. Rev. 44, 499–530 (1969)

    Article  Google Scholar 

  3. Marin, F., Luquet, G.: Molluscan shell proteins. C. R. Palevol. 3, 469–492 (2004)

    Article  Google Scholar 

  4. Checa, A.: A new model for periostracum and shell formation in Unionidae (bivalvia, mollusca). Tissue Cell. 32, 405–416 (2000)

    Article  Google Scholar 

  5. Yoon, G.-L., Kim, B.-T., Kim, B.-O., Han, S.-H.: Chemical–mechanical characteristics of crushed oyster-shell. Waste Manag. 23, 825–834 (2003)

    Article  Google Scholar 

  6. Silva, D., Debacher, N.A., Castilhos Junior, A.B., Rohers, F.: Caracterização físico-química e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da Ilha de Santa Catarina. Quim. Nova 33, 1053–1058 (2010)

    Article  Google Scholar 

  7. Yang, W., Kashani, N., Li, X.-W., Zhang, G.-P., Meyers, M.A.: Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mater. Sci. Eng. C 31, 724–729 (2011)

    Article  Google Scholar 

  8. Yang, W., Zhang, G., Liu, H., Li, X.: Microstructural characterization and hardness behavior of a biological Saxidomus purpuratus shell. J. Mater. Sci. Technol. 27, 139–146 (2011)

    Article  Google Scholar 

  9. Kamba, A.S., Ismail, M., Ibrahim, T.A.T., Zakaria, Z.A.B.: Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). J. Nanomater. 2013, 1–9 (2013)

    Article  Google Scholar 

  10. Li, H., Jin, D., Li, R., Li, X.: Structural and mechanical characterization of thermally treated conch shells. JOM-US 67, 720–725 (2015)

    Article  Google Scholar 

  11. Kuo, W.-T., Wang, H.-Y., Shu, C.-Y., Su, D.-S.: Engineering properties of controlled low-strength materials containing waste oyster shells. Const. Build. Mater. 46, 128–133 (2013)

    Article  Google Scholar 

  12. Lertwattanaruk, P., Makul, N., Siripattarapravat, C.: Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 111, 133–141 (2012)

    Article  Google Scholar 

  13. Nguyen, D.H., Boutouil, M., Sebaibi, N., Leleyter, L., Baraud, F.: Valorization of seashell by-products in pervious concrete pavers. Const. Build. Mater. 49, 151–160 (2013)

    Article  Google Scholar 

  14. Li, G., Xu, X., Chen, E., Fan, J., Xiong, G.: Properties of cement-based bricks with oyster-shells ash. J. Cleaner Prod. 91, 279–287 (2015)

    Article  Google Scholar 

  15. Gleize, P.J.P., Motta, E.V., Silva, D.A., Roman, H.R.: Characterization of historical mortars from Santa Catarina (Brazil). Cem. Concr. Compos. 31, 342–346 (2009)

    Article  Google Scholar 

  16. Safi, B., Saidi, M., Daoui, A., Bellal, A., Mechekak, A., Toumi, K.: The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Const. Build. Mater. 78, 430–438 (2015)

    Article  Google Scholar 

  17. Thunjai, T., Boyd, C.E., Boonyaratpalin, M.: Quality of liming materials used in aquaculture in Thailand. Aquacult. Int. 12, 161–168 (2004)

    Article  Google Scholar 

  18. Wang, H.-Y., Kuo, W.-T., Lin, C.-C., Po-Yo, C.: Study of the material properties of fly ash added to oyster cement mortar. Const. Build. Mater. 41, 532–537 (2013)

    Article  Google Scholar 

  19. Yang, E.-I., Kim, M.-Y., Park, H.-G., Yi, S.-T.: Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Const. Build. Mater. 24, 758–765 (2010)

    Article  Google Scholar 

  20. Hahn, S., Rodolfo-Metalpa, R., Griesshaber, E., Schmahl, W.W., Buhl, D., Hall-Spencer, J.M., Baggini, C., Fehr, K.T., Immenhauser, A.: Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences 9, 1897–1914 (2012)

    Article  Google Scholar 

  21. Frank, G.: Determining the reactivity of limes by means of the wet slaking curve. ZKG Int. 4, 172–176 (1974)

    Google Scholar 

  22. Potgieter, J.H., Potgieter, S.S., Moja, S.J., Mulaba-Bafubiandi, A.: The standard reactivity test as a measure of lime’s quality. J. S. Afr. Inst. Min. Metall. 102, 67–69 (2002)

    Google Scholar 

  23. Hogewoning, S., Mehling, C., Wettrau, D., Wolter, A., Bohne, T.: Extension of the wet slaking curve evaluation to include determination of the proportion of reaction-retarded material in the quicklime. ZKG Int. 64, 61–72 (2011)

    Google Scholar 

  24. Adams, F.W.: Effect of particle size on the hydration of lime. Ind. Eng. Chem. 19, 589–591 (1927)

    Article  Google Scholar 

  25. Ritchie, I.M., Xu, B.-A.: The kinetics of lime slaking. Hydrometallurgy. 23, 377–396 (1990)

    Article  Google Scholar 

  26. Kemperl, J., Maček, J.: Precipitation of calcium carbonate from hydrated lime of variable reactivity, granulation and optical properties. Int. J. Miner. Process. 93, 84–88 (2009)

    Article  Google Scholar 

  27. Ramachandran, V.S., Sereda, P.J., Feldman, R.F.: Mechanism of hydration of calcium oxide. Nature 201, 288–289 (1964)

    Article  Google Scholar 

  28. Commandré, J.-M., Salvador, S., Nzihou, A.: Reactivity of laboratory and industrial limes. Chem. Eng. Res. Des. 85, 473–480 (2007)

    Article  Google Scholar 

  29. Gheevarhese, O., Strydom, C.A., Potgieter, J.H., Potgieter, S.S.: The influence of chloride and sulphate ions on the slaking rate of lime derived from different limestone deposits in South Africa. Water SA 28, 45–48 (2002)

    Article  Google Scholar 

  30. Potgieter, J.H., Potgieter, S.S., Strydom, C.A., Gheevarhese, O.: The influence of various common ions on the slaking of some South African limes. Water SA 29, 433–436 (2003)

    Article  Google Scholar 

  31. Leontakianakos, G., Baziotis, I., Stathopoulos, V.N., Kypritidou, Z., Profitis, L., Chatzitheodoridis, E., Tsimas, S.: Influence of natural water composition on reactivity of quicklime derived from Ca-rich and Mg-rich limestone: Implications for sustainability of lime manufacturing through geochemical modelling. RSC Adv. 6, 65799–65807 (2016)

    Article  Google Scholar 

  32. Whitman, W.G., Davis, G.H.B.: The hydration of lime. Ind. Eng. Chem. 18, 118–120 (1926)

    Article  Google Scholar 

  33. Rosell, J.R., Haurie, L., Navarro, A., Cantalapiedra, I.R.: Influence of the traditional slaking process on the lime putty characteristics. Const. Build. Mater. 55, 423–430 (2014)

    Article  Google Scholar 

  34. Boynton, R.S.: Chemistry and Technology of Lime and limestone, 2 edn. Wiley, New York (1992)

    Google Scholar 

  35. Potgieter, S.S., Strydom, C.A., Gheevarhese, O.: The effect of ultrasonic energy on lime slaking. Min. Eng. 16, 767–770 (2003)

    Article  Google Scholar 

  36. Ruiz-Agudo, E., Rodriguez-Navarro, C.: Microstructure and rheology of lime putty. Langmuir 26, 3868–3877 (2010)

    Article  Google Scholar 

  37. Oates, J.A.H.: Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley-VCH, Weinheim (1998)

    Book  Google Scholar 

  38. Kantiranis, N.: Hydration of high-calcium quicklime with methanol-water mixtures. Const. Build. Mater. 17, 91–96 (2003)

    Article  Google Scholar 

  39. Tadros, M.E., Skalny, J., Kalyoncu, R.S.: Kinetics of calcium hydroxide crystal growth from solution. J Colloid Interface Sci. 55, 20–24 (1976)

    Article  Google Scholar 

  40. Giles, D.E., Ritchie, I.M., Xu, B.-A.: The kinetics of dissolution of slaked lime. Hydrometallurgy 32, 119–128 (1993)

    Article  Google Scholar 

  41. Wolter, A., Luger, S., Schaefer, G.: The kinetics of the hydration of quicklime. ZKG Int. 57, 60–68 (2004)

    Google Scholar 

  42. Rodriguez-Navarro, C., Ruiz-Agudo, E., Ortega-Huertas, M., Hansen, E.: Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation. Langmuir 21, 10948–10957 (2005)

    Article  Google Scholar 

  43. Lorrain, A., Gillikin, D.P., Paulet, Y.-M., Chauvaud, L., Mercier, A.L., Navez, J., André, L.: Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geol. 33, 965–968 (2005)

    Article  Google Scholar 

  44. Füllenbach, C.S., Schöne, B.R., Shirai, K., Takahata, N., Ishida, A., Sano, Y.: Minute co-variations of Sr/Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia)—are geochemical variations at the ultra-scale masking potential environmental signals? Geochim. Cosmochim. Acta. 205, 256–271 (2017)

    Article  Google Scholar 

  45. Faust, G.T.: Thermal analysis studies on carbonates (I): aragonite and calcite. Am. Miner. 35, 207–222 (1950)

    Google Scholar 

  46. Antao, S.M., Hassan, I.: Thermal analyses of sodalite, tugtupite, danalite and helvite. Can. Miner. 40, 163–172 (2002)

    Article  Google Scholar 

  47. Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., Rodríguez-García, M.E.: Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J. Mater. Civ. Eng. 21, 694–698 (2009)

    Article  Google Scholar 

  48. Gunasekaran, S., Anbalagan, G., Pandi, S.: Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 37, 892–899 (2006)

    Article  Google Scholar 

  49. RRUFF Project. http://rruff.info/

  50. Urmos, J., Sharma, S.K., Mackenzie, F.T.: Characterization of some biogenic carbonates with Raman spectroscopy. Am. Miner. 76, 641–646 (1991)

    Google Scholar 

  51. Potgieter, J.H., Potgieter, S.S., de Waal, D.: An empirical study of factors influencing lime slaking Part II: Lime constituents and water composition. Water SA 29, 157–160 (2003)

    Article  Google Scholar 

  52. Busing, W.R., Morgan, H.W.: Infrared Spectrum of Ca(OH)2. J. Chem. Phys. 28, 998–999 (1958)

    Article  Google Scholar 

  53. Bellamy, L.J.: The infrared spectra of complex molecules, 3 edn. Chapman and Hall, London (1975)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to VAC Minerais, S.A. (Rio Maior, Portugal) for the supply of the commercial limestone. This work was supported by Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico financed by Quadro de Referência Estratégica Nacional (QREN) and Research Unit: UID/GEO/04035/2013 financed by Fundação para a Ciência e a Tecnologia (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. F. Gamelas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

See Tables 7 and 8 and Figs. 10 and 11.

Table 7 XRF data (minor elements) of the natural bivalve shells and limestone
Table 8 XRF data (minor elements) of the hydrated lime powders from bivalve shells and limestone
Fig. 10
figure 10

Differential scanning calorimetry patterns of the natural bivalve shells and limestone

Fig. 11
figure 11

FTIR spectra of the oyster and scallop lumps

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, E., Gamelas, J.A.F., Coroado, J. et al. Recycling Waste Seashells to Produce Calcitic Lime: Characterization and Wet Slaking Reactivity. Waste Biomass Valor 10, 2397–2414 (2019). https://doi.org/10.1007/s12649-018-0232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0232-y

Keywords

Navigation