Skip to main content

Advertisement

Log in

Valorization of the Liquid Fraction of a Mixture of Livestock Waste and Cheese Whey for Biogas Production Through High-rate Anaerobic Co-digestion and for Electricity Production in a Microbial Fuel Cell (MFC)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of this work is the evaluation of two alternative ways of valorizing the liquid fraction of a mixture of different kinds of livestock waste and cheese whey, namely (a) biogas production through the anaerobic co-digestion of in a Periodic Anaerobic Baffled Reactor (PABR) and (b) electrical energy generation in a Microbial Fuel Cell (MFC). The different kinds of livestock manure (pig manure, cow manure, poultry manure, sheep manure and cheese whey) were collected from the region of Metsovo, Greece. The mixture was passed through a pretreatment process producing a liquid fraction that was treated (a) in a pilot-scale Periodic Anaerobic Baffled Reactor (PABR) for methane production and (b) in a lab-scale two-chamber Microbial Fuel Cell for electricity production. In the present study, the experimental data obtained from a previous study [1] were used for the evaluation of a simple mathematical model, based on Monod kinetics, for the PABR using Aquasim 2.1 [2]. The simple model was able to satisfactorily describe the behavior of the PABR in terms of soluble COD consumption. In addition, the same liquid waste, filtered (0.70 μm) and diluted at different initial concentrations, was used as feedstock for electricity production, using a two-chamber microbial fuel cell (MFC). The experiments showed that the MFC performance was not limited by the wastewater strength, since the substrate removal efficiency and the maximum power density were not affected by an increase of the initial concentration. The required time showed a linear relationship with the initial concentration of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Michalopoulos, I., Mathioudakis, D., Chatzikonstantinou, D., Papadopoulou, K., Lyberatos, G.: Anaerobic co-digestion in a pilot-scale periodic anaerobic baffled reactor (PABR) and composting of animal by-products and whey. Albi: 6th International Conference on Engineering for Waste and Biomass Valorization, (2016)

  2. Reicher, P.: User manual of aquasim for the identification and simulation of aquatic systems. Dubendorf: Swiss Federal Institute for Environmental Science and Technology (1998)

  3. Mata-Alvarez, J., Mace, S., Llabres, P.: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74, 3–16 (2000)

    Article  Google Scholar 

  4. Braun, R.: Potential of Co-digestion. http://www.novaenergie.ch/iea-bioenergytask37/Dokumente/final.PDF. Access on 7 Nov 2007

  5. Stamatelatou, K., Kopsahelis, A., Blika, P., Lyberatos, G.: Anaerobic digestion of olive mill wastewater in a periodic anaerobic baffled reactor (PABR). 4th Bioremediation Conference (2009).

  6. Skiadas, I.V., Gavala, H.N., Lyberatos, G.: Modelling of the periodic anaerobic baffled reactor (PABR) based on the retaining factor concept. Water Res. 34, 3725–3736 (2000)

    Article  Google Scholar 

  7. Antonopoulou, G., Alexandropoulou, M., Lytras, C., Lyberatos, G.: Modeling of anaerobic digestion of food industry wastes in different bioreactor types. Waste Biomass Valoriz. 6, 335–341 (2015).

    Article  Google Scholar 

  8. Hernandez-Fernandez, F.J., Perez de los Rios, A., Salar-Garcia, M.J., Ortiz-Martinez, V.M., Lozano-Bianco, L.J., Godinez, C., Tomas-Alonso, F., Quesada-Medina, J.: Recent progress and perspectives in microbial fuel cell for bioenergy generation and wastewater treatment. Fuel Process. Technol. 138, 284–297 (2015)

    Article  Google Scholar 

  9. Stamatelatou, K., Antonopoulou, G., Tremouli, A., Lyberatos, G.: Production of gaseous biofuels and electricity from cheese whey. Ind. Eng. Chem. Res. 50, 639–644 (2011)

    Article  Google Scholar 

  10. Tremouli, A., Antonopoulou, G., Bebelis, S., Lyberatos, G.: Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresour. Technol. 131, 380–389 (2013)

    Article  Google Scholar 

  11. Tremouli, A., Intzes, A., Intzes, P., Bebelis, S., Lyberatos, G.: Effect of periodic complete anolyte replacement on the long-term performance of a four air cathodes single chamber microbial fuel cell. J. Appl. Electrochem. 45, 755–763 (2015)

    Article  Google Scholar 

  12. Ahn, Y., Logan, B.E.: Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 101, 469–475 (2010)

    Article  Google Scholar 

  13. Du, Z., Li, H., Gu, T.: A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25, 464–482 (2007)

    Article  Google Scholar 

  14. Kim, B.H., Chang, I.S., Gadd, G.M.: Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 76, 485–494 (2007)

    Article  Google Scholar 

  15. Watanabe, K.: Recent developments in microbial fuel cell technologies for sustainable bioenergy. J. Biosci. Bioeng. 106, 528–536 (2008)

    Article  Google Scholar 

  16. Rittmann, B.E.: Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 100, 203–212 (2008)

    Article  Google Scholar 

  17. Oh, S.-E., Min, B., Logan, B.E.: Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38, 4900–4904 (2004)

    Article  Google Scholar 

  18. Logan, B.E., Aelterman, P., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguiac, S., Verstraete, W., Rabaey, K.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)

    Article  Google Scholar 

  19. Min, B., Logan, B.E.: Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38, 5809–5814 (2004)

    Article  Google Scholar 

  20. Logan, B.E., Cheng, S., Watson, V., Estadt, G.: Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007)

    Article  Google Scholar 

  21. Clauwaert, P., Aelterman, P., Pham, T.H., Schamphelaire, L.D., Carballa, M., Rabaey, K., Verstraete, W.: Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 79, 901–913 (2008)

    Article  Google Scholar 

  22. Simmons, K., Deatrick J.: Soil sampling. U.S. Environmental Protection Agency, Science and Ecosystem Support Division, Athens (2014)

    Google Scholar 

  23. APHA, AWWA, WEF: Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC (1995)

    Google Scholar 

  24. Josefsson, B.: Rapid spectrophotometric determination of total carbohydrates—from methods of seawater analysis. In: Grasshoff, K., Ehrhardt, M., Krenlig, K.. (eds.) pp. 340–342. Verlag Chemie GmbH, Weinheim (1983)

  25. Skiadas, I.V., Lyberatos, G.: The periodic anaerobic baffled reactor. Water Sci. Technol. 38, 401–408 (1998)

    Article  Google Scholar 

  26. Choi, S.: Microscale microbial fuel cells: advances and challenges. Biosens. Bioelectron. 69, 8–25 (2015)

    Article  Google Scholar 

  27. Min, B., Kim, J.R., Oh, S.E., Regan, J.M., Logan, B.E.: Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39, 4961–4968 (2005)

    Article  Google Scholar 

  28. He, Z., Huang, Y., Manohar, A.K., Mansfeld, F.: Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry. 74, 78–82 (2008)

    Article  Google Scholar 

  29. He, Z., Minteer, S., Angenet, L.: Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39, 5262–5267 (2005)

    Article  Google Scholar 

  30. Jadhav, G.S., Ghangrekar, M.M.: Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 100, 717–723 (2009)

    Article  Google Scholar 

  31. Liu, H., Cheng, S., Logan, B.E.: Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39, 658–662 (2005)

    Article  Google Scholar 

  32. Cheng, S., Logan, B.E.: Increasing power generation for scaling up single-chamber air cathode microbial fuel cell. Bioresour. Technol. 102, 4468–4473 (2011)

    Article  Google Scholar 

  33. Kim, J.R., Min, B., Logan, B.E.: Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68, 23–30 (2005)

    Article  Google Scholar 

  34. Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I.M.: Electricity generation from cysteine in a microbial fuel cell. Water Res. 39, 942–952 (2005)

    Article  Google Scholar 

  35. Bond, D.R., Lovley, D.R.: Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003)

    Article  Google Scholar 

  36. Antonopoulou, G., Stamatelatou, K., Bebelis, S., Lyberatos, G.: Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J. 50, 10–15 (2010)

    Article  Google Scholar 

  37. Min, B., Cheng, S., Logan, B.E.: Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39, 1675–1686 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Papadopoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalopoulos, I., Chatzikonstantinou, D., Mathioudakis, D. et al. Valorization of the Liquid Fraction of a Mixture of Livestock Waste and Cheese Whey for Biogas Production Through High-rate Anaerobic Co-digestion and for Electricity Production in a Microbial Fuel Cell (MFC). Waste Biomass Valor 8, 1759–1769 (2017). https://doi.org/10.1007/s12649-017-9974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9974-1

Keywords

Navigation