Skip to main content

Advertisement

Log in

Pyrolysis of Olive Pomace: Degradation Kinetics, Gaseous Analysis and Char Characterization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The kinetics of olive pomace pyrolysis and the characterization of the obtained products were studied. The thermal degradation characteristics of olive pomace were investigated using thermogravimetric analysis under nitrogen atmosphere. Five heating rate profiles were applied (5, 15, 20, 25 and 30 °C.min −1), with a final temperature of 600 °C which was maintained for 2 h. Two main stages of degradation were identified, corresponding to the degradation of the main compounds (hemicellulose, cellulose and lignin).The kinetic parameters were evaluated by using Kissinger–Akahira–Sunose and parallel reaction methods. The energy of activation was evaluated according to the conversion rate of olive pomace. The analysis of the gaseous products showed that the main pyrolysis gas products of biomass are: CO2 (122.6 mg g−1), CO (45.3 mg g−1), C3H8 (1.7 mg g−1), C3H6 (6 mg g−1) and CH4 (20.4 mg g−1). The characterization of pyrolytic char was performed using thermogravimetric analysis, BET and X-ray fluorescence (XRF) analyses. The textural properties of the biochar were found to correspond to an ultra-microporous solid with a high porous surface. The BET surface area measured using CO2 adsorption was 296 m2g−1 and the micorpore volume was 0.16 cm3g−1. Furthermore, XRF analysis indicated that Ca and K are the major mineral species in the char with non-negligible presence of P and Mg contents. These different characteristics may encourage its recovery for soil amendment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bentsen, N.S., Jack, M.W., Felby, C., Thorsen, B.J.: Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy 69, 506–515 (2014)

    Article  Google Scholar 

  2. McKendry, P. Energy production from biomass: (part 2): conversion technologies. Bioresour. Technol. 83(1), 47–54 (2002)

    Article  Google Scholar 

  3. Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Alshareef, I., Chin, S. A.: Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)

    Article  Google Scholar 

  4. Loow, Y.-L., et al.: Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J. Agric. Food Chem. 63(38), 8349–8363 (2015)

    Article  Google Scholar 

  5. Loow, Y.L., Wu, T.Y., Jahim, J.M., Mohammad, A.W., Teoh, W.H.: Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3), 1491–1520 (2016)

    Article  Google Scholar 

  6. Loow Y.-L. et al.: Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Convers. Manag. 138, 248–260 (2017)

    Article  Google Scholar 

  7. Jeguirim, M., Bikai, J., Elmay, Y., Limousy, L., Njeugna, E.: Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy Sustain. Dev. 23, 188–193 (2014)

    Article  Google Scholar 

  8. Jeguirim, M., Limousy, L., Dutournie, P.: Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chem. Eng. Res. Des. 92(10), 1876–1882 (2014)

    Article  Google Scholar 

  9. Jeguirim, M., Elmay, Y., Limousy, L., Lajil, M., Said, R.:Devolatilization behavior and pyrolysis kinetics of potential Tunisian biomass fuels. Environ. Prog. Sustain. Energy 33(4), 1452–1458 (2014)

    Google Scholar 

  10. Elmay, Y., Trouvé, G., Jeguirim, M., Said, R.: Energy recovery of date palm residues in a domestic pellet boiler. Fuel Process. Technol. 112, 12–18 (2013)

    Article  Google Scholar 

  11. Jeguirim, M., Chouchène, A., Réguillon, A. F., Trouvé, G., Le Buzit, G.: A new valorisation strategy of olive mill wastewater: Impregnation on sawdust and combustion. Resour. Conserv. Recycl. 59, 4–8 (2012)

    Article  Google Scholar 

  12. Peterson, S.C., Jackson, M.A.: Simplifying pyrolysis: using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Ind. Crops Prod. 53, 228–235 (2014)

    Article  Google Scholar 

  13. Haykiri-Acma, H.: The role of particle size in the non-isothermal pyrolysis of hazelnut shell. J. Anal. Appl. Pyrolysis 75(2), 211–216 (2006)

    Article  Google Scholar 

  14. Bouraoui, Z., Jeguirim, M., Guizani, C., Limousy, L., Dupont, C., Gadiou, R.: Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity. Energy 88, 703 (2015)

    Article  Google Scholar 

  15. Z. Bouraoui, C. Dupont, M. Jeguirim, L. Limousy, R. Gadiou: CO2 gasification of woody biomass chars: the influence of K and Si on char reactivity. Comptes. Rendus. Chim. 19(4), 457–465 (2016)

    Article  Google Scholar 

  16. “La production tunisienne d’olive en hausse de 27%. Kapitalis, le portail d’informations sur la Tunisie et le Maghreb Arabe. http://www.kapitalis.com/kapital/12675-la-production-tunisienne-d-olive-en-hausse-de-27.html. Accessed 13 Mar 2015

  17. Boubaker, K.: La filière huile d’olive en Tunisie: performances et stratégies d’adaptation (2002)

  18. Guizani, C., Haddad, K., Jeguirim, M., Colin, B., Limousy, L.: Combustion characteristics and kinetics of torrefied olive pomace. Energy 107, 453–463 (2016)

    Article  Google Scholar 

  19. Ghouma, I., Jeguirim, M., Dorge, S., Limousy, L., Matei Ghimbeu, C., Ouederni, A.: Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes. Rendus. Chim. 18(1), 63–74 (2015)

    Article  Google Scholar 

  20. Kang, M., Bae, Y.-S., Lee, C.-H.: Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon 43(7), 1512–1516 (2005)

    Article  Google Scholar 

  21. Anca-Couce, A., Berger, A., Zobel, N.: How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123, 230–240 (2014)

    Article  Google Scholar 

  22. Ghetti, P., Ricca, L., Angelini, L.: Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75(5), 565–573 (1996)

    Article  Google Scholar 

  23. Blanco López, M.C., Blanco, C.G., Martínez-Alonso, A., Tascón, J.M.D.: Composition of gases released during olive stones pyrolysis. J. Anal. Appl. Pyrolysis 65(2), 313–322 (2002)

    Article  Google Scholar 

  24. El may, Y., Jeguirim, M., Dorge, S., Trouvé, G., Said, R.: Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy 44(1), 702–709 (2012)

    Article  Google Scholar 

  25. M. Jeguirim, G. Trouvé: Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour. Technol. 100(17), 4026–4031 (2009)

    Article  Google Scholar 

  26. Seo, D.K., Park, S.S., Hwang, J., Yu, T.-U.: Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis 89(1), 66–73 (2010)

    Article  Google Scholar 

  27. Grønli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)

    Article  Google Scholar 

  28. Orfão, J.J.M., Antunes, F.J.A., Figueiredo, J.L.: Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78(3), 349–358 (1999)

    Article  Google Scholar 

  29. Jauhiainen, J., Martin-Gullon, I., Conesa, J.A., Font, R.: Emissions from pyrolysis and combustion of olive oil solid waste. J. Anal. Appl. Pyrolysis 74(1–2), 512–517 (2005)

    Article  Google Scholar 

  30. Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A.: Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon 42(7), 1233–1242 (2004)

    Article  Google Scholar 

  31. Shaaban, A., Se, S.-M., Dimin, M.F., Juoi, J.M., Mohd Husin, M.H., Mitan N.M.M.: Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 107, 31–39 (2014)

    Article  Google Scholar 

  32. Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1), 67–74 (2010)

    Article  Google Scholar 

  33. Hansen, J. et al.:Target atmospheric CO2: where should humanity aim?. Open Atmos. Sci. J. 2(1), 217–231 (2008)

    Article  Google Scholar 

  34. Demiral, I., Kul, Ş.Ç.: Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J. Anal. Appl. Pyrolysis 107, 17–24 (2014)

    Article  Google Scholar 

  35. Burhenne, L., Damiani, M., Aicher, T.: Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel 107, 836–847 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Limousy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouma, I., Jeguirim, M., Guizani, C. et al. Pyrolysis of Olive Pomace: Degradation Kinetics, Gaseous Analysis and Char Characterization. Waste Biomass Valor 8, 1689–1697 (2017). https://doi.org/10.1007/s12649-017-9919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9919-8

Keywords

Navigation