Skip to main content

Advertisement

Log in

Catalyst -Free Biodiesel Production from Industrial Rosin Residue (Dark-Grade Rosin) Using Supercritical Methanol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A novel approach for a catalyst-free biodiesel production process from industrial dark-grade rosin (black rosin, BR) using supercritical methanol was investigated. Thirty experiments of different reaction conditions were designed and conducted in a stainless steel batch reactor, in which, supercritical carbon dioxide (ScCO2) is used as a green medium. Yield of BRB was investigated as a function of temperature, pressure, time, the mass ratios of BR/heavy turpentine and BR/methanol to determine the appropriate reaction conditions. The highest yield of BRB was 93.05 wt%, which was obtained at a temperature of 613 K, a reaction pressure of 11–12 MPa, a reaction time of 3 h. The mass ratio of BR/methanol is optimal at 1:0.8 with a 1:1.2 mass ratio of BR/heavy turpentine. The physicochemical properties of BR-based biodiesel (BD100) and blended black rosin biodiesel (BRB) with petroleum diesel were tested. The results show that BRB can be compounded well and compounding can effectively improve the oil performance. BRB B5 conforms to standard quality requirements as a substitute for petroleum diesel products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rodriguez-Guerrero, J.K., Rubens, M.F., Rosa, P.T.V.: Production of biodiesel from castor oil using sub and supercritical ethanol: effect of sodium hydroxide on the ethyl ester production. J. Supercrit. Fluids. 83, 124–132 (2013)

    Article  Google Scholar 

  2. Caldas, B.S., Nunes, C.S., Souza, P.R., Rosa, F.A., Visen-tainer, J.V., Júnior, O.D.O.S, Muniz, E.C.: Supercritical ethanolysis for biodiesel production from edible oilwaste using ionic liquid [HMim] [HSO4] as catalyst. Appl. Catal. B. 181, 289–297 (2016)

    Article  Google Scholar 

  3. Palkovits, R.: Pentenoic acid pathways for cellulosic biofuels. Angew. Chem Int. Ed. 49, 4336–4338 (2010)

    Article  Google Scholar 

  4. Vasudevan, P.T., Fu, B.: Environmentally sustain-able biofuels: advances in biodiesel research. Waste Biomass Valor. 1, 47–63 (2010)

    Article  Google Scholar 

  5. Caldeira, C., Queriro´s, J., Freire, F.: Biodiesel from waste cooking oils in portugal: alternative collection systems. Waste Biomass Valor. 6, 771–779 (2015)

    Article  Google Scholar 

  6. Romani, A., Garrote, G., Ballesteros, I., Ballesteros, M.: Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel. 111, 66–74 (2013)

    Article  Google Scholar 

  7. Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M.: An overview of second generation biofuel technologies. Bioresour. Technol. 101, 1570–1580 (2011)

    Article  Google Scholar 

  8. Wu, L.M., Zhou, C.H., Keeling, J., Tong, D.S., Yu, W.H.: Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Sci. Rev. 115, 373–386 (2012)

    Article  Google Scholar 

  9. Tan, K.T., Lee, K.T.: A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges. Renew. Sustain. Energy Rev. 15, 2452–2456 (2011)

    Article  Google Scholar 

  10. Farobie, O., Matsumura, Y.: A comparative study of biodiesel production using methanol, ethanol and tert-butyl methyl ether (MTBE) under supercritical conditions. Bioresour. Technol. 191, 306–311 (2015)

    Article  Google Scholar 

  11. Ortiz-Martínez, V. M., Salar-García, M.J., Hernandez-Fernandez, F. J., Olivares-Carrillo, P., de los Ríos, A. P., Quesada-Medina, J.: Ionic liquids in supercritical methanol greatly enhance transesterification reaction for high-yield biodiesel production. AlChE J. 62, 3842–3846 (2016)

    Article  Google Scholar 

  12. Tan, K.T., Lee, K.T., Mohamed, A.R.: Prospects of non-catalytic supercritical methyl acetate process in biodiesel production. Fuel Process. Technol. 92, 1905–1909 (2011)

    Article  Google Scholar 

  13. He, H.Y., Wang, T., Zhu, S.L.: Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel. 86, 442–447 (2007)

    Article  Google Scholar 

  14. Saka, S., Kusdiana, D.: Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel. 80, 225–231 (2001)

    Article  Google Scholar 

  15. Tan, K.T., Lee, K.T., Mohamed, A.R.: Production of FAME by palm oil transesterification via supercritical methanol technology. Biomass Bioenerg. 33, 1096–1099 (2009)

    Article  Google Scholar 

  16. Kusdiana, D., Saka, S.: Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol. 91, 289–295 (2004)

    Article  Google Scholar 

  17. Kusdiana, D., Saka, S.: Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol. J. Chem. Eng. Jpn. 34, 383–387 (2001)

    Article  Google Scholar 

  18. Wood, C.D., Cooper, A.I., DeSimone, J.M.: Green synthesis of polymers using supercritical carbon dioxide. Curr. Opin. Solid State Mater. Sci. 8, 325–331 (2004)

    Article  Google Scholar 

  19. Peng, Y.K., Sun, L.L., Shi, W., Long, J.J.: Investigation of enzymatic activity, stability and structure changes of pectinase treated in supercritical carbon dioxide. J. Cleaner Prod. 125, 331–340 (2016)

    Article  Google Scholar 

  20. Gremos, S., kekos, D., kolisis, F.: Supercritical carbon dioxide biocatalysis as a novel and green methodology for the enzymatic acylation of fibrous cellulose in one step. Bioresour. Technol. 115, 96–101 (2012)

    Article  Google Scholar 

  21. Bertoldi, C., Silva, C.D et al.: Continuous production of biodiesel from soybean oil in supercritical ethanol and carbon dioxide as cosolvent. Energy Fuels. 23, 5165–5172 (2009)

    Article  Google Scholar 

  22. Liu, S.W., Xie, C.G., Yu, S.T., Liu, F.S.: Dimerization of rosin using Brønsted–Lewis acidic ionic liquid as catalyst. Catal. Commun. 9, 2030–2034 (2008)

    Article  Google Scholar 

  23. Liu, X.Q., Xin, W.B., Zhang, J.W.: Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem. 11, 1018–1025 (2009)

    Article  Google Scholar 

  24. Tong, D.S., Zheng, Y.M., Yu, W.H., Wu, L.M., Zhou, C.H.: Catalytic cracking of rosin over acid-activated montmorillonite catalysts. Appl. Clay Sci. 100, 123–128 (2014)

    Article  Google Scholar 

  25. Glišic´, S., Lukic, I., Dejan Skala, D.: Biodiesel synthesis at high pressure and temperature: analysis of energy consumption on industrial scale. Bioresour. Technol. 100, 6347–6354 (2009)

    Article  Google Scholar 

  26. Lee, J.S., Saka, S.: Review: biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour. Technol. 101, 7191–7200 (2010)

    Article  Google Scholar 

  27. He, H., Sun, S., Wang, T., Zhu, S.: Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. J. Am. Oil Chem. Soc. 84, 399–404 (2007)

    Article  Google Scholar 

  28. Ladero, M., de Gracia, M., Trujillo, F., Garcia-Ochoa, F.: Phenomenological kinetic modelling of the esterification of rosin and polyols. Chem. Eng. J. 197, 387–397 (2012)

    Article  Google Scholar 

  29. Ramırez, C.A.: Mass transfer enhancement by chemical reaction in turbulent tube flow. Chem. Eng. J. 138, 628–633 (2008)

    Article  Google Scholar 

  30. Rezayat, M., Ghaziaskar, H.S.: Continuous synthesis of glycerol acetates in supercritical carbon dioxide using Amberlyst 15R. Green Chem. 11, 710–715 (2009)

    Article  Google Scholar 

  31. Sakthivel, A., Komura, K., Sugi, Y.: MCM-48 supported tungstophosphoric acid: an efficient catalyst for the esterification of long-chain fatty acids and alcohols in supercritical carbon dioxide. Indus. Eng. Chem. Res. 47, 2538–2544 (2008)

    Article  Google Scholar 

  32. Wakil, M.A., Kalam, M.A., Masjuki, H.H., Atabani, A.E., Rizwanul Fattah, I.M.: Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend. Energy Convers. Manag. 94, 51–67 (2015)

    Article  Google Scholar 

  33. Method D6751-12. American Society for Testing and Materials Annual Book of ASTM Standards. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels (2012)

  34. Method D7467-15. American Society for Testing and Materials Annual Book of ASTM Standards. Standard specification for diesel fuel oil, biodiesel blend (B6 to B20) (2015)

  35. Method 14214. Test methods for FAME published by the European Committee for Standardization (2008)

  36. Berman, P., Nizri, S., Wiesman, Z.: Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenerg. 35, 2861–2866 (2011)

    Article  Google Scholar 

  37. Method T20828. Blodiesel blend stock (BD100) for diesel engine fuels of China National Standard (2007)

  38. Saxena P, Jawale S, Joshipura MHA. Review on prediction of properties of biodiesel and blends of biodiesel. Proc. Eng. 51, 395–402 (2013)

    Article  Google Scholar 

  39. Method T25199. Biodiesel fuel blends (B5) of China National Standard (2015)

  40. Pimentel, M.F., Ribeiro, G.M.G.S., Cruz da, R.S., Stragevitch, L., Filho, J.G.A.P., Teixeira, L.S.G: Determination of biodiesel content when blended with mineral diesel fuel using infrared spectroscopy and multivariate calibration. Microchem. J. 82, 201–206 (2006)

    Article  Google Scholar 

  41. Ullman, T., Mason, R., Montalvo, D.: Study of cetane number and aromatic content effects on regulated emissions from a heavy-duty engine. Southwest Research Institute Report No. 08–2940, CRC Contract VE-1, September (1990)

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 31560241), the Guangxi Natural Science Foundation (Grant Nos. 2014GXNSFDA118010), Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No. 2014Z006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Huang, C., Chen, J. et al. Catalyst -Free Biodiesel Production from Industrial Rosin Residue (Dark-Grade Rosin) Using Supercritical Methanol. Waste Biomass Valor 9, 1191–1198 (2018). https://doi.org/10.1007/s12649-017-9848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9848-6

Keywords

Navigation