Skip to main content
Log in

Beneficiation of Oil Shale Processing Waste: Secondary Binder Phases in Alkali Activated Composites

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Oil shales are low calorific fuels leaving upon processing large amounts of solid waste with limited secondary use, mostly because of low self-cementitious properties. In this paper, alkali activation of the waste remaining after shale oil retorting in solid-heat-carrier plants was investigated to improve the cementitious properties of this waste. The formation of secondary silicate binder phases was studied in samples activated with NaOH, Na-silicate and modified Na-silicate solutions. In mixtures with Na-silicate activator highest uniaxial compressive strength and formation of a calcium-aluminium-silicate-hydrate gel was observed and characterized according to 29Si MAS-NMR and ATR-FTIR spectra as mainly consisting of polymeric silicate middle groups (Q2), and Al substituted Q3 and Q4 species indicative of geopolymerisation. NaOH activation was not sufficient to fully dissolve the amorphous phase present in the source material and only chain silicate structures with minimal crosslinkage were formed. The results indicate that the solid-heat-carrier ash from shale oil retorting exhibits geopolymeric properties on activation with Na-silicate based activators and that, with optimisation of mixing and curing conditions, provides chemically stable composite that can be used for waste stabilization or low strength construction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ots, A.: Oil shale fuel combustion. Tallinna Raamatutrükikoda, Tallinn (2006)

    Google Scholar 

  2. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K.: Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. J. Hazard. Mater. 184(1–3), 567–573 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.073

    Article  Google Scholar 

  3. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T.: Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale. 29(4), 376–403 (2012). https://doi.org/10.3176/oil.2012.4.08

    Article  Google Scholar 

  4. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimae, K., Liira, M., Motlep, R.: Oil shale CFBC ash cementation properties in ash fields. Fuel. 93(1), 172–180 (2012). https://doi.org/10.1016/j.fuel.2011.08.050

    Article  Google Scholar 

  5. Talviste, P., Sedman, A., Mõtlep, R., Kirsimäe, K.: Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Manag. Res. 31(6), 641–647 (2013). https://doi.org/10.1177/0734242x13482033

    Article  Google Scholar 

  6. Liira, M., Kirsimae, K., Kuusik, R., Motlep, R.: Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel. 88(4), 712–718 (2009). https://doi.org/10.1016/j.fuel.2008.08.012

    Article  Google Scholar 

  7. Bernal, S.A., Rodriguez, E.D., Kirchheim, A.P., Provis, J.L.: Management and valorisation of wastes through use in producing alkali-activated cement materials. J. Chem. Technol. Biotechnol. 91(9), 2365–2388 (2016). https://doi.org/10.1002/jctb.4927

    Article  Google Scholar 

  8. Provis, J.L., Palomo, A., Shi, C.J.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015). https://doi.org/10.1016/j.cemconres.2015.04.013

    Article  Google Scholar 

  9. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  10. Hajimohammadi, A., van Deventer, J.S.J.: Solid reactant-based geopolymers from rice hull ash and sodium aluminate. Waste Biomass Valoriz. (2016). https://doi.org/10.1007/s12649-016-9735-6

    Google Scholar 

  11. Yliniemi, J., Tiainen, M., Illikainen, M.: Microstructure and physical properties of lightweight aggregates produced by alkali activation-high shear granulation of FBC recovered fuel-biofuel fly ash. Waste Biomass Valoriz. 7(5), 1235–1244 (2016). https://doi.org/10.1007/s12649-016-9509-1

    Article  Google Scholar 

  12. Tchakoute, H.K., Ruscher, C.H., Kong, S., Kamseu, E., Leonelli, C.: Thermal behavior of metakaolin-based geopolymer cements using sodium waterglass from rice husk ash and waste glass as alternative activators. Waste Biomass Valoriz. 8(3), 573–584 (2017). https://doi.org/10.1007/s12649-016-9653-7

    Article  Google Scholar 

  13. Hajimohammadi, A., van Deventer, J.S.J.: Characterisation of one-part geopolymer binders made from fly ash. Waste Biomass Valoriz. 8(1), 225–233 (2017). https://doi.org/10.1007/s12649-016-9582-5

    Article  Google Scholar 

  14. Zhang, Z.H., Wang, H., Zhu, Y.C., Reid, A., Provis, J.L., Bullen, F.: Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 88–89, 194–201 (2014). https://doi.org/10.1016/j.clay.2013.12.025

    Article  Google Scholar 

  15. Guo, X.L., Shi, H.S., Chen, L.M., Dick, W.A.: Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J. Hazard. Mater. 173(1–3), 480–486 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.110

    Article  Google Scholar 

  16. Guo, X.L., Shi, H.S., Dick, W.A.: Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr. Compos. 32(2), 142–147 (2010). https://doi.org/10.1016/j.cemconcomp.2009.11.003

    Article  Google Scholar 

  17. Paiste, P., Liira, M., Heinmaa, I., Vahur, S., Kirsimae, K.: Alkali activated construction materials: assessing the alternative use for oil shale processing solid wastes. Constr. Build. Mater. 122, 458–464 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.073

    Article  Google Scholar 

  18. Golubev, N.: Solid oil shale heat carrier technology for oil shale retorting. Oil Shale. 20(3), 324–332 (2003)

    Google Scholar 

  19. Clark, B.A., Brown, P.W.: Formation of ettringite from monosubstituted calcium sulfoaluminate hydrate and gypsum. J. Am. Ceram. Soc. 82(10), 2900–2905 (1999)

    Article  Google Scholar 

  20. Paaver, P., Paiste, P., Kirsimae, K.: Geopolymeric potential of the Estonian oil shale solid residues: petroter solid heat carrier retorting ash. Oil Shale. 33(4), 373–392 (2016). https://doi.org/10.3176/oil.2016.4.05

    Article  Google Scholar 

  21. Fernández-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S.: Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides, T. (ed.) Infrared spectroscopy—materials science, engineering and technology. InTech, Rijeka (2012)

    Google Scholar 

  22. Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F., Cong, X.D.: Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748 (1999)

    Article  Google Scholar 

  23. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir. 23(17), 9076–9082 (2007). https://doi.org/10.1021/la701185g

    Article  Google Scholar 

  24. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R.: (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26(16), 3789–3797 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

    Article  Google Scholar 

  25. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: One-part geopolymer mixes from geothermal silica and sodium aluminate. Ind. Eng. Chem. Res. 47(23), 9396–9405 (2008). https://doi.org/10.1021/ie8006825

    Article  Google Scholar 

  26. Lee, W.K.W., van Deventer, J.S.J.: Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosificates. Langmuir. 19(21), 8726–8734 (2003). https://doi.org/10.1021/la026127e

    Article  Google Scholar 

  27. Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L.: Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir. 29(17), 5294–5306 (2013). https://doi.org/10.1021/la4000473

    Article  Google Scholar 

  28. Reinik, J., Heinmaa, I., Mikkola, J.P., Kirso, U.: Hydrothermal alkaline treatment of oil shale ash for synthesis of tobermorites. Fuel. 86(5–6), 669–676 (2007). https://doi.org/10.1016/j.fuel.2006.09.010

    Article  Google Scholar 

  29. Mägi, M., Lippmaa, E., Samoson, A., Engelhardt, G., Grimmer, A.R.: Solid-state high-resolution silicon-29 chemical shifts in silicates. J. Phys. Chem. 88, 1518–1522 (1984)

    Article  Google Scholar 

  30. Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., Grimmer, A.R.: Structural studies of silicates by solid state high resolution Si-29 NMR. J. Am. Chem. Soc. 102, 4889–4893 (1980)

    Article  Google Scholar 

  31. Andersen, M.D., Jakobsen, H.J., Skibsted, J.: Characterization of white Portland cement hydration and the C–S–H structure in the presence of sodium aluminate by Al-27 and Si-29 MAS NMR spectroscopy. Cem. Concr. Res. 34(5), 857–868 (2004). https://doi.org/10.1016/j.cemconres.2003.10.009

    Article  Google Scholar 

  32. Faucon, P., Petit, J.C., Charpentier, T., Jacquinot, J.F., Adenot, F.: Silicon substitution for aluminum in calcium silicate hydrates. J. Am. Ceram. Soc. 82(5), 1307–1312 (1999)

    Article  Google Scholar 

  33. Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodriguez, J.: A model for the C–A–S–H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

    Article  Google Scholar 

  34. Sun, G.K., Young, J.F., Kirkpatrick, R.J.: The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem. Concr. Res. 36(1), 18–29 (2006). https://doi.org/10.1016/j.cemconres.2005.03.002

    Article  Google Scholar 

  35. Davidovits, J.: Geopolymer chemistry and applications, 3rd edn. Institut Géopolymère, Saint-Quentin (2011)

    Google Scholar 

  36. Lodeiro, I.G., Fernandez-Jimenez, A., Palomo, A., Macphee, D.E.: Effect on fresh C–S–H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40(1), 27–32 (2010). https://doi.org/10.1016/j.cemconres.2009.08.004

    Article  Google Scholar 

  37. Maekawa, T.: Chemical reactions occurred in oxide glasses and their melts and evaluation by acid-base concept: NMR investigation of multi-component silicate classes. J. Ceram. Soc. Jpn. 112(1309), 467–471 (2004). https://doi.org/10.2109/jcersj.112.467

    Article  Google Scholar 

  38. Li, J., Hayakawa, S., Shirosaki, Y., Osaka, A.: Revisiting structure of silica gels from water glass: an H-1 and Si-29 MAS and CP-MAS NMR study. J. Sol–Gel. Sci. Technol. 65(2), 135–142 (2013). https://doi.org/10.1007/s10971-012-2917-1

    Article  Google Scholar 

  39. Faucon, P., Delagrave, A., Petit, J.C., Richet, C., Marchand, J.M., Zanni, H.: Aluminum incorporation in calcium silicate hydrates (C–S–H) depending on their Ca/Si ratio. J. Phys. Chem. B. 103(37), 7796–7802 (1999). https://doi.org/10.1021/Jp990609q

    Article  Google Scholar 

  40. Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–1697 (2005). https://doi.org/10.1016/j.cemconres.2004.10.042

    Article  Google Scholar 

  41. Komnitsas, K.A.: Potential of geopolymer technology towards green buildings and sustainable cities. 2011 Int. Conf. Green Build. Sustain. Cities. 21, 1023–1032 (2011). https://doi.org/10.1016/j.proeng.2011.11.2108

    Google Scholar 

  42. Xu, H., Van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59(3), 247–266 (2000). https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  43. van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139(3), 506–513 (2007). https://doi.org/10.1016/j.jhazmat.2006.02.044

    Article  Google Scholar 

  44. Castel, A., Foster, S.J., Ng, T., Sanjayan, J.G., Gilbert, R.I.: Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. (2015). https://doi.org/10.1617/s11527-015-0599-1

    Google Scholar 

  45. Rüscher, C.H., Mielcarek, E., Lutz, W., Ritzmann, A., Kriven, W. M.: Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy. J. Am. Ceram. Soc. 93(9), 2585–2590 (2011). https://doi.org/10.1111/j.1551-2916.2010.03773.x

    Article  Google Scholar 

  46. Rüscher, C.H., Mielcarek, E.M., Wongpa, J., Jaturapitakkul, C., Jirasit, F., Lohaus, L.: Silicate-, aluminosilicate and calciumsilicate gels for building materials: chemical and mechanical properties during ageing. Eur. J. Mineral. 23(1), 111–124 (2011). https://doi.org/10.1127/0935-1221/2010/0022-2070

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Viru Keemia Grupp AS for providing the material for this study. This study was supported by Estonian Research Council Grant IUT23-7 to (I. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Päärn Paiste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiste, P., Külaviir, M., Paaver, P. et al. Beneficiation of Oil Shale Processing Waste: Secondary Binder Phases in Alkali Activated Composites. Waste Biomass Valor 10, 1407–1417 (2019). https://doi.org/10.1007/s12649-017-0140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0140-6

Keywords

Navigation