Skip to main content
Log in

Development of a Novel Micro-Aerobic Cultivation Strategy for High Potential CotA Laccase Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Recently, bacterial laccases has drawn researchers’ interest due to their ability to overcome high pH and salt concentration conditions compared to fungal laccases. Here we report a novel micro-aerobic cultivation strategy for enhancing CotA laccase expression and study its application for dye decolorization. Micro-aerobic cultivation of Escherichia coli BL21 (DE3) strain carrying pT7-FLAG-MAT-TAG-1-CotA had significantly enhanced CotA laccase activity up to 13903 U/L. The most unique findings of this investigation are that micro-aerobic cultivation strategy enhanced the reactive oxygen species production which consequently led to the over expression of CotA laccase gene. Malachite green, Crystal violet, Congo red and Bromophenol blue were efficiently decolorized by using purified CotA laccase without presence of any mediators at pH 6 and 9. These results provide a great platform for the dynamic production and application of bacterial laccase in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brander, S., Mikkelsen, J.D., Kepp, K.P.: Characterization of an akali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS ONE 9, e99402 (2014)

    Article  Google Scholar 

  2. Sharma, P., Goel, R., Capalash, N.: Bacterial laccases. World J. Microbiol. Biotechnol. 23, 823–832 (2007)

    Article  Google Scholar 

  3. Dwivedi, U.N., Singh, P., Pandey, V.P., Kumar, A.: Structure–function relationship among bacterial, fungal and plant laccases: review. J. Mol. Catal. B 68, 117–128 (2011)

    Article  Google Scholar 

  4. Lončar, N., Božić, N., Lopez-Santin, J., Vujčić, Z.: Bacillus amyloliquefaciens laccase—from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour. Technol. 147, 177–183 (2013)

    Article  Google Scholar 

  5. Guan, Z.B., Shui, Y., Song, C.M., Zhang, N., Cai, Y.J., Liao, X.R.: Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Environ. Sci. Pollut. Res. 22, 9515–9523 (2015)

    Article  Google Scholar 

  6. Koschorreck, K., Richter, S.M., Ene, A.B., Roduner, E., Schmid, R.D., Urlacher, V.B.: Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl. Microbiol. Biotechnol. 79, 217–224 (2008)

    Article  Google Scholar 

  7. Dubé, E., Shareck, F., Hurtubise, Y., Daneault, C., Beauregard, M.: Homologous cloning, expression, and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl. Microbiol. Biotechnol. 79, 597–603 (2008)

    Article  Google Scholar 

  8. Lu, L., Wang, T.N., Xu, T.F., Wang, J.Y., Wang, C.L., Zhao, M.: Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour. Technol. 134, 81–86 (2013)

    Article  Google Scholar 

  9. Mohorčič, M., Benčina, M., Friedrich, J., Jerala, R.: Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bioresour. Technol. 100, 851–858 (2009)

    Article  Google Scholar 

  10. Ihssen, J., Reiss, R., Luchsinger, R., Thöny-Meyer, L., Richter, M.: Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci. Rep. (2015). doi:10.1038/srep10465

    Google Scholar 

  11. Santhanam, N., Vivanco, J.M., Decker, S.R., Reardon, K.F.: Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol. 29, 480–489 (2011)

    Article  Google Scholar 

  12. Durão, P., Chen, Z., Fernandes, A.T., Hildebrandt, P., Murgida, D.H., Todorovic, S., Pereira, M.M., Melo, E.P., Martins, L.O.: Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J. Biol. Inorg. Chem. 13, 183–193 (2008)

    Article  Google Scholar 

  13. Salmon, K.A., Hung, S.P., Steffen, N.R., Krupp, R., Baldi, P., Hatfield, G.W., Gunsalus, R.P.: Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J. Biol. Chem. 280(15), 15084–15096 (2005)

    Article  Google Scholar 

  14. Constantinidou, C., Hobman, J.L., Griffiths, L., Patel, M.D., Penn, C.W., Cole, J.A., Overton, T.W.: A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J. Biol. Chem. 281(8), 4802–4815 (2006)

    Article  Google Scholar 

  15. Partridge, J.D., Sanguinetti, G., Dibden, D.P., Roberts, R.E., Poole, R.K., Green, J.: Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 282, 11230–11237 (2007)

    Article  Google Scholar 

  16. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  17. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  18. Wilson, C.M.: Staining of proteins on gels: comparison of dyes and procedures. Methods Enzymol. 91, 236–247 (1983)

    Article  Google Scholar 

  19. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25, 402–408 (2001)

    Article  Google Scholar 

  20. Nygren, P.A., Stefan, S., Uhlén, M.: Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12, 184–188 (1994)

    Article  Google Scholar 

  21. Bentley, W.E., Davis, R.H., Kompala, D.S.: Dynamics of induced cat expression in Escherichia coli. Biotechnol. Bioeng. 38, 749–760 (1991)

    Article  Google Scholar 

  22. Duan, K.J., Lin, M.T., Hung, Y.C., Lin, C.T., Chen, C.W., Sheu, D.C.: Production of GST-SOD fusion protein by recombinant E coli XL1 Blue. J. Chem. Technol. Biotechnol. 75, 722–728 (2000)

    Article  Google Scholar 

  23. Brissos, V., Pereira, L., Munteanu, F.D., Paulo, A.C., Lígia O., Martins, L.O.: Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnol. J. 4, 558–563 (2009)

    Article  Google Scholar 

  24. Wang, C., Cui, D., Lei Lu, L., Zhang, N., Yang, H., Zhao, M., Dai, S.: Cloning and characterization of CotA laccase from Bacillus subtilis WD23 decoloring dyes. Ann. Microbiol. 66, 461–467 (2016)

    Article  Google Scholar 

  25. Hu, J.H., Wang, F., Liu, C.Z.: Development of an efficient process intensification strategy for enhancing Pfu DNA olymerase production in recombinant Escherichia coli. Bioprocess Biosyst. Eng. 38, 651–659 (2015)

    Article  Google Scholar 

  26. Lecina, M., Sarró, E., Casablancas, A., Godia, F., Cairo, J.J.: IPTG limitation avoids metabolic burden and acetic acid accumulation in induced fed-batch cultures of Escherichia coli M15 under glucose limiting conditions. Biochem. Eng. J. 70, 78–83 (2013)

    Article  Google Scholar 

  27. Imlay, J.A.: The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11(7), 443–454 (2013)

    Article  Google Scholar 

  28. Imlay, J.A.: Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr. Opin. Microbiol. 24,124–131(2015)

    Article  Google Scholar 

  29. Lucana, D.O.O., Wedderhoff, I., Groves, M.R.: ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J. Signal Transduct. (2012). doi:10.1155/2012/605905

    Google Scholar 

  30. Dalton, T.P., Shertzer, H.G., Alvaro Puga, A.: Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39, 67–101 (1999)

    Article  Google Scholar 

  31. Kimura, T., Nishioka, H.: Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat. Res. 389, 237–242 (1997)

    Article  Google Scholar 

  32. Artsatbanov, V., Vostroknutova, G., Shleeva, M., Goncharenko, A., Zinin, A., Ostrovsky, D., Kapreliants, A.: Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria. Biochemistry 77, 362–371 (2012)

    Google Scholar 

  33. Moldes, M.D., Sanromán, A.: Amelioration of the ability to decolorize dyes by laccase: relationship between redox mediators and laccase isoenzymes in Trametes versicolor. World J. Microbiol. Biotechnol. 22, 1197–1204 (2006)

    Article  Google Scholar 

  34. Chairin, T., Nitheranont, T., Watanabe, A., Asada, Y., Khanongnuch, C., Lumyong, S.: Biodegradation of bisphenol a and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl. Biochem. Biotechnol. 169, 539–545 (2013)

    Article  Google Scholar 

  35. Xu, F.: Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35, 7608–7614 (1996)

  36. Kanagaraj, J., Senthilvelan, T., Panda, R.C.: Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technol. Environ. Policy 17, 1443–1456 (2015)

    Article  Google Scholar 

  37. Rodrigues, C.S.D., Madeira, L.M., Boaventura, R.A.R: Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation. J. Hazard Mater. 172, 1551–1559 (2009)

    Article  Google Scholar 

  38. Liu, H., Cheng, Y., Du, B., Tong, C., Liang, S., Han, S., Zheng, S., Lin, Y.: Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS ONE (2015). doi:10.1371/journal.pone.0119833

    Article  Google Scholar 

Download references

Acknowledgements

The funding of this study was supported by the National Key Technology Research and Development Program of China (No. 2015BAK45B01), the National Natural Science Foundation of China (No. 21476242), and the National Basic Research Program (973 Program) of China (No. 2013CB733600). We would like to acknowledge the Chinese Government for the financial support of the Ph. D scholarship awarded to Nadia A. Samak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzhao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samak, N.A., Hu, J., Wang, K. et al. Development of a Novel Micro-Aerobic Cultivation Strategy for High Potential CotA Laccase Production. Waste Biomass Valor 9, 369–377 (2018). https://doi.org/10.1007/s12649-016-9824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9824-6

Keywords

Navigation