Skip to main content

Advertisement

Log in

Modelling and Predictive Study of Hydrothermal Liquefaction: Application to Food Processing Residues

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Thermochemical processes are promising ways for energy valorization of biomass and waste, but suffer from a lack of predictability. In this work, we focus on using model molecules to model the behavior of wet organic residues during hydrothermal liquefaction (HTL), a process used to produce bio-based liquid fuels from wet biomass. Monomeric and polymeric model molecules were used as modelling tools to study HTL of real resources. Experiments with model mixtures and four food processing residues (blackcurrant pomace, raspberry achenes, brewer’s spent grains, grape marc) were conducted at 300 °C, 60 min holding time and a dry matter concentration of 15 wt%. To elaborate model mixtures, four model monomers (glucose, guaiacol, glutamic acid, linoleic acid) and two model polymers (microcrystalline cellulose, alkali lignin) were selected from characterization of blackcurrant pomace. HTL of model mixtures reproduced HTL of blackcurrant pomace with acceptable representativeness, but results showed that model mixtures should include polymers to represent the fiber content of the resource. Results of HTL of model compounds were used to elaborate polynomial correlations able to predict experimental yields as a function of the initial biomass composition. Calculations were within −8.0 to +4.8 wt% of experimental yields obtained by HTL of real food processing residues, showing a good accuracy of the correlations. These expressions also showed good agreement with HTL results reported in the literature for other resources, and could be useful to assess the potential of various kinds of bioresources for HTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ADF:

Acid detergent fibers

ADL:

Acid detergent lignin

BSG:

Brewer’s spent grains

daf:

Dry ash free

DOE:

Design of experiments

HHV:

Higher heating value (MJ kg−1)

HTL:

Hydrothermal liquefaction

NDF:

Neutral detergent fibres

bi :

Linear contribution coefficient of model compound i

bij :

Binary interaction coefficient between model compound i and model compound j

F:

Value of the F-test

mBO, mC, mG, mIn and mR :

Mass of bio-oil, char, gas, initial dry ash free matter and raw organic residue (g), respectively

Mj :

Molar mass of gaseous species j (g mol−1)

n:

Total number of experiments

p:

Number of parameters of the model (p = 4 for the linear model, p = 10 for the quadratic model)

Pi, Pf :

Initial and final pressures in the reactor (Pa), respectively

q:

Number of model compounds in the DOE

R:

Ideal gas constant (8.314 J K−1 mol−1)

SDbi (or bij) :

Standard deviation on the contribution coefficient bi (or bij)

SSO:

Proportion of solvent-soluble organics in the raw organic residue (wt%)

t:

Value of the student test

Ti, Tf :

Initial and final temperatures in the reactor (K)

VG :

Volume of gaseous phase in the reactor (m3)

WR :

Water content of the raw organic residue (wt%)

xi, xj :

Mass fraction of model compound i or j in the mixture or in the biomass, respectively

ȳ:

Mean value of the experimental responses

Y:

Experimental response (e.g. mass yield of bio-oil)

Yi :

Experimental response of a single model compound

yj :

Molar fraction of gaseous species j

yk :

Measured experimental response for experiment k

ŷk :

Calculated experimental response for experiment k

YA, YBO, YC and YG :

Yield of organic matter in aqueous phase, yields of bio-oil, char and gas (wt% of initial dry ash free matter), respectively

References

  1. van Swaaij, W., Kersten, S., Palz, W.: Biomass power for the world: transformations to effective use. Biomass power for the world: transformations to effective use, pp. 1–734 (2015)

  2. FAO: Food Wastage Footprint: Impacts on Natural Resources. FAO (2013)

  3. Akiya, N., Savage, P.E.: Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102, 2725–2750 (2002)

    Article  Google Scholar 

  4. Weingärtner, H., Franck, E.U.F.: Supercritical water as a solvent. Angew. Chem. Int. Ed. 44, 2672–2692 (2005)

    Article  Google Scholar 

  5. Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew. Sustain. Energy Rev. 21, 35–51 (2013)

    Article  Google Scholar 

  6. Toor, S.S., Rosendahl, L., Rudolf, A.: Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36, 2328–2342 (2011)

    Article  Google Scholar 

  7. Elliott, D.C., Biller, P., Ross, A.B., Schmidt, A.J., Jones, S.B.: Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour. Technol. 178, 147–156 (2015)

    Article  Google Scholar 

  8. Pedersen, T.H., Grigoras, I.F., Hoffmann, J., Toor, S.S., Daraban, I.M., Jensen, C.U., Iversen, S.B., Madsen, R.B., Glasius, M., Arturi, K.R., Nielsen, R.P., Søgaard, E.G., Rosendahl, L.A.: Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation. Appl. Energy 162, 1034–1041 (2016)

    Article  Google Scholar 

  9. Barreiro, D.L., Prins, W., Ronsse, F., Brilman, W.: Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53, 113–127 (2013)

    Article  Google Scholar 

  10. Déniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., Fages, J.: Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew. Sustain. Energy Rev. 54, 1632–1652 (2016)

    Article  Google Scholar 

  11. Arturi, K.R., Kucheryavskiy, S., Søgaard, E.G.: Performance of hydrothermal liquefaction (HTL) of biomass by multivariate data analysis. Fuel Process. Technol. 150, 94–103 (2016)

    Article  Google Scholar 

  12. Biller, P., Ross, A.B.: Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102, 215–225 (2011)

    Article  Google Scholar 

  13. Valdez, P.J., Tocco, V.J., Savage, P.E.: A general kinetic model for the hydrothermal liquefaction of microalgae. Bioresour. Technol. 163, 123–127 (2014)

    Article  Google Scholar 

  14. Teri, G., Luo, L., Savage, P.E.: Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures. Energy Fuels 28, 7501–7509 (2014)

    Article  Google Scholar 

  15. Yang, W., Li, X., Li, Z., Tong, C., Feng, L.: Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures. Bioresour. Technol. 196, 99–108 (2015)

    Article  Google Scholar 

  16. Leow, S., Witter, J.R., Vardon, D.R., Sharma, B.K., Guest, J.S., Strathmann, T.J.: Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chem. 17, 3584–3599 (2015)

    Article  Google Scholar 

  17. AFNOR, NF EN 14774-1 Biocombustibles solides—Détermination de la teneur en humidité—Méthode par séchage à l’étuve—Partie 1: humidité totale—Méthode de référence (2010)

  18. AFNOR, NF V18-122—Aliments des animaux—Détermination séquentielle des constituants pariétaux—Méthode par traitement aux détergents neutre et acide et à l’acide sulfurique (2013)

  19. AFNOR, NF EN 14775 Biocombustibles solides—Méthode de détermination de la teneur en cendres (2010)

  20. Dote, Y., Inoue, S., Ogi, T., Yokoyama, S.: Distribution of nitrogen to oil products from liquefaction of amino acids. Bioresour. Technol. 64, 157–160 (1998)

    Article  Google Scholar 

  21. Dote, Y., Inoue, S., Ogi, T., Yokoyama, S.: Studies on the direct liquefaction of protein-contained biomass: the distribution of nitrogen in the products. Biomass Bioenergy 11, 491–498 (1996)

    Article  Google Scholar 

  22. Tinsson, W.: Plans d’expérience: constructions et analyses statistiques. Mathématiques et Applications, vol. 67, 1st edn. Springer, Berlin (2010). doi:10.1007/978-3-642-11472-4

  23. Anouti, S., Haarlemmer, G., Déniel, M., Roubaud, A.: Analysis of physico-chemical properties of bio-oil from hydrothermal liquefaction of blackcurrant pomace. Energy Fuels 30, 398–406 (2015)

    Article  Google Scholar 

  24. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y.: Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84, 875–884 (2005)

    Article  Google Scholar 

  25. Akgül, G., Kruse, A.: Influence of salts on the subcritical water-gas shift reaction. J. Supercrit. Fluids 66, 207–214 (2012)

    Article  Google Scholar 

  26. Changi, S., Zhu, M., Savage, P.E.: Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures. ChemSusChem 5, 1743–1757 (2012)

    Google Scholar 

  27. Yin, S., Tan, Z.: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions. Appl. Energy 92, 234–239 (2012)

    Article  Google Scholar 

  28. Vardon, D.R., Sharma, B.K., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y., Strathmann, T.J.: Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102, 8295–8303 (2011)

    Article  Google Scholar 

  29. Minowa, T., Yokoyama, S., Kishimoto, M., Okakura, T.: Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74, 1735–1738 (1995)

    Article  Google Scholar 

  30. Minowa, T., Kondo, T., Sudirjo, S.T.: Thermochemical liquefaction of indonesian biomass residues. Biomass Bioenergy 14, 517–524 (1998)

    Article  Google Scholar 

  31. Minowa, T., Murakami, M., Dote, Y., Ogi, T., Yokoyama, S.: Oil production from garbage by thermochemical liquefaction. Biomass Bioenergy 8, 117–120 (1995)

    Article  Google Scholar 

  32. Mazaheri, H., Lee, K.T., Bhatia, S., Mohamed, A.R.: Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of catalysts. Bioresour. Technol. 101, 745–751 (2010)

    Article  Google Scholar 

  33. Mazaheri, H., Lee, K.T., Mohamed, A.R.: Influence of temperature on liquid products yield of oil palm shell via subcritical water liquefaction in the presence of alkali catalyst. Fuel Process. Technol. 110, 197–205 (2013)

    Article  Google Scholar 

  34. Valdez, P.J., Dickinson, J.G., Savage, P.E.: Characterization of product fractions from hydrothermal liquefaction of nannochloropsis sp. and the influence of solvents. Energy Fuels 25, 3235–3243 (2011)

    Article  Google Scholar 

  35. Barreiro, D.L., Riede, S., Hornung, U., Kruse, A., Prins, W.: Hydrothermal liquefaction of microalgae: effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Res. 12, 206–212 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the French Research National Agency ANR (LIQHYD Project. Grant No. ANR-12-BIME-0003). The authors are also grateful to Marine Blanchin, Hélène Miller, Sébastien Thiery and Julien Roussely for technical support and help on analysis of the products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Haarlemmer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Déniel, M., Haarlemmer, G., Roubaud, A. et al. Modelling and Predictive Study of Hydrothermal Liquefaction: Application to Food Processing Residues. Waste Biomass Valor 8, 2087–2107 (2017). https://doi.org/10.1007/s12649-016-9726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9726-7

Keywords

Navigation