Skip to main content

Advertisement

Log in

Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Nutrient recovery from digested biodegradable waste as marketable products has become an important task for anaerobic digestion plants to meet both regulatory drivers and market demands, while producing an internal revenue source. As such, the present waste problem could be turned into an economic opportunity. The aim of this study was to provide a comprehensive overview and critical comparison of the available/emerging technologies for nutrient recovery from digestate, and a classification of the resulting end-products according to their fertilizer characteristics. Based on the stage of implementation, the technical performance, as well as financial aspects, struvite precipitation/crystallization, ammonia stripping and (subsequent) absorption using an acidic air scrubber were selected as best available technologies to be applied at full-scale for nutrient recovery as marketable fertilizer commodities. The resulting end-products can and should be classified as renewable nitrogen–phosphorus (N/P) precipitates and nitrogen–sulfur (N/S) solutions, respectively, in fertilizer and environmental legislations. This would stimulate their use and foster nutrient recovery technology implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gellings, C.W., Parmenter, K.E.: Energy efficiency in fertilizer production and use. In: Gellings, W., Parmenter, K. (eds.) Efficient use and conservation of energy. Eolss Publishers, Oxford (2004)

    Google Scholar 

  2. Sutton, M.A., Bleeker, A., Howard, C.M., Bekunda, M., Grizzetti, B., De Vries, W., Van Grinsven, H.J.M, Abrol, Y.P., Adhya, T.K., Billen, G., Davidson, E.A., Datta, A., Diaz, R., Erisman, J.W., Liu, X.J., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R.W., Sims, T., Westhoek, H., Zhang, F.S.: Our nutrient world: The challenge to produce more food and energy with less pollution; Global Overview of nutrient management; Centre for Ecology and Hydrology: Edinburgh, United Kingdom. http://www.ceh.ac.uk/products/publications/our-nutrient-world-full-report.html (2013)

  3. Scholz, R.W., Wellmer, F.-W.: Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Global Environ. Change. 23, 11–27 (2013)

    Article  Google Scholar 

  4. Hou, D., Al-Tabbaa, A., Guthrie, P., Watanabe, K.: Sustainable waste and materials management: National policy and global perspective. Environ. Sci. Technol. 46(5), 2494–2495 (2012)

    Article  Google Scholar 

  5. Guest, J.S., Skerlos, S.J., Barnard, J.L., Beck, M.B., Daigger, G.T., Hilger, H., Jackson, S.J., Karvazy, K., Kelly, L., Macpherson, L., Mihelcic, J.R., Pramanik, A., Raskin, L., Van Loosdrecht, M.C.M., Yeh, D., Love, N.G.: A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ. Sci. Technol. 42(16), 6126–6130 (2009)

    Article  Google Scholar 

  6. Natural Resource Canada: Towards an integrated action plan for the bio-economy; Critical conversation scoping paper; Natural Resources Canada: Ottawa, Ontario, Canada, 2015; http://carleton.ca/cserc/wp-content/uploads/Bioeconomy-Final-Report-July-30.pdf

  7. EuropaBio: Building a Bio-Based Economy for Europe in 2020; Policy guide; EuropaBio: Brussels, Belgium, 2015; http://www.bio-economy.net/reports/files/building-a-bio-based-economy-for-Europe-in-2020.pdf

  8. Novotny, V.: Water-energy nexus: Retrofitting urban areas to achieve zero pollution. Build. Res. Inf. 41(5), 589–604 (2013)

    Article  Google Scholar 

  9. United Nations Environment Programme: Green economy and trade: trends, challenges and opportunities. United Nations Environment Programme: Nairobi, Kenya, 2013. http://www.unep.org/greeneconomy/GreenEconomyandTrade/GreenEconomyandTradeReport/tabid/106194/language/en-US/Default.aspx

  10. European Commission: Roadmap to a Resource Efficient Europe; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions: Brussels, Belgium, 2011; http://ec.europa.eu/environment/resource_efficiency/about/roadmap/index_en.htm

  11. Fehrenbach, H., Giegrich, J., Reinhardt, G., Sayer, U., Gretz, M., Lanje, K, Criteria for a sustainable use of bio-energy on a global scale; Report; German Federal Environment Agency: Dessau-Roßlau, Germany. http://www.globalbioenergy.org/bioenergyinfo/bioenergy-and-sustainability/detail/fi/c/7295/ (2008)

  12. Vaneeckhaute, C. Nutrient recovery from bio-digestion waste: From field experimentation to model-based optimization. Joint Ph.D. Dissertation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, and Faculté des Sciences et de Génie, Université Laval, Québec, Canada, 2015

  13. Lemmens, E., Ceulemans, J., Elslander, H., Vanassche, S., Brauns, E., Vrancken, K.: Best available techniques (BAT) for animal manure processing. Academia Press, Ghent (2007)

    Google Scholar 

  14. Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A.: Phosphorus recovery from wastewater by struvite crystallization: a review. Crit. Rev. Env. Sci. Tec. 39(6), 433–477 (2009)

    Article  Google Scholar 

  15. Fenton, O., Uallachain, D.: Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res. 1(1), 49–56 (2012)

    Article  Google Scholar 

  16. Masse, L., Masse, D.I., Pellerin, Y.: The use of membranes for the treatment of manure: a critical literature review. Biosyst. Eng. 98(4), 371–380 (2007)

    Article  Google Scholar 

  17. Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., Meesschaert, B.: Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit. Rev. Env. Sci. Technol. 45(4), 336–384 (2015)

    Article  Google Scholar 

  18. Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N.: Review: phosphorus removal and recovery technologies. Sci. Total Environ. 212, 69–81 (1998)

    Article  Google Scholar 

  19. Vaneeckhaute, C., Meers, E., Michels, E., Christiaens, P., Tack, F.M.G.: Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis. Water Air Soil Poll. 223(4), 1593–1603 (2012)

    Article  Google Scholar 

  20. Vaneeckhaute, C., Meers, E., Michels, E., Buysse, J., Tack, F.M.G.: Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenerg. 49, 239–248 (2013)

    Article  Google Scholar 

  21. Vaneeckhaute, C., Meers, E., Michels, E., Ghekiere, G., Accoe, F., Tack, F.M.G.: Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: a field experiment. Biomass Bioenerg 55, 175–189 (2013)

    Article  Google Scholar 

  22. Vaneeckhaute, C., Ghekiere, G., Michels, E., Vanrolleghem, P.A., Tack, F.M.G., Meers, E.: Assessing nutrient use efficiency and environmental pressure of macro-nutrients in bio-based mineral fertilizers: a review of recent advances and best practices at field scale. Adv. Agron. 128, 137–180 (2014)

    Article  Google Scholar 

  23. Moeller, K., Mueller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12(3), 242–257 (2012)

    Article  Google Scholar 

  24. Characterisation end products of biological treatment; Flemish compost agency: Mechelen, Belgium, 2012; http://www.vcmmestverwerking.be/informationfiles/rapport_karakterisering_eindproducten_vlaco1.pdf

  25. Digestate as alternative for chemical fertilizers: Physical, chemical and microbiological characterization of digestates; West Flemish experimental Center for Agriculture: Flanders, Belgium, http://www.vcmmestverwerking.be/informationfiles/Bijlage_02_Karakterisatiedigestaten_POVLT.pdf. (in Dutch) (2007)

  26. Bond, T., Brouckaert, C.J., Foxon, K.M., Buckley, C.A.: A critical review of experimental and predicted methane generation from anaerobic codigestion. Water Sci. Technol. 65(1), 183–189 (2012)

    Article  Google Scholar 

  27. Hillel, D.: Soil in the environment: crucible of terrestrial life. Academia Press, New York City (2008)

    Google Scholar 

  28. Lubelloa, C., Goria, R., Niceseb, F.P., Ferrinic, F.: Municipal-treated wastewater reuse for plant nurseries irrigation. Water Res. 38(12), 2939–2947 (2004)

    Article  Google Scholar 

  29. Vasedan, P., Thapliyal, A., Srivastava, R.K., Pandey, A., Dastidar, M.G., Davies, P.: Fertigation potential of domestic wastewater for trea plantation. J. Sci. Ind. Res. 69, 146–150 (2010)

    Google Scholar 

  30. Hjorth, M., Christensen, K.V., Christensen, M.L., Sommer, S.G.: Solid-liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 30(1), 153–180 (2010)

    Article  Google Scholar 

  31. Uludag-Demirer, S., Demirer, G.N., Chen, S.: Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process Biochem. 40(12), 3667–3674 (2005)

    Article  Google Scholar 

  32. Bonmati, A., Flotats, X.: Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manage. 23(3), 261–272 (2003)

    Article  Google Scholar 

  33. Gustin, S., Marinsek-Logar, R.: Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. 89(1), 61–66 (2011)

    Article  Google Scholar 

  34. Liao, P.H., Chen, A., Lo, K.V.: Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour. Technol. 54(1), 17–20 (1995)

    Article  Google Scholar 

  35. Melse, R.W., Ogink, N.W.M.: Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands. Trans. ASAE 48(6), 2303–2313 (2005)

    Article  Google Scholar 

  36. Kertesz, S., Beszedes, S., Laszlo, Z., Szabo, G., Hodur, C.: Nanofiltration and reverse osmosis of pig manure: comparison of results from vibratory and classical modules. Desalination Water Treat. 14(1–3), 233–238 (2010)

    Article  Google Scholar 

  37. Ledda, C., Schievano, A., Salati, S., Adani, F.: Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: a case study. Water Res. 47(16), 6157–6166 (2013)

    Article  Google Scholar 

  38. Waeger, F., Delhaye, T., Fuchs, W.: The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep. Purif. Technol. 73(2), 271–278 (2010)

    Article  Google Scholar 

  39. Guo, X., Zeng, L., Jin, X.: Advanced regeneration and fixed-bed study of ammonium and potassium removal from anaerobic digested wastewater by natural zeolite. J. Environ. Sci. 25(5), 954–961 (2013)

    Article  Google Scholar 

  40. Pelin, K. N., Sander, B., Stoumann, J. L. Nutrient recovery from biogas digestate by adsorption and ion-exchange using clinoptilolite. In Proceedings of the 15th RAMIRAN International Conference: Versailles, France, 2013

  41. A review of enhancement techniques, processing options and novel digestate products; Report OMK006—002; Waste and Resources Action Plan (WRAP): United Kingdom, 2012; http://www.wrap.org.uk/sites/files/wrap/Digestates%20from%20Anaerobic%20Digestion%20A%20review%20of%20enhancement%20techniques%20and%20novel%20digestate%20products_0.pdf

  42. Gonzalez-Fernandez, C., Molinuevo-Salces, B., Cruz Garcia Gonzalez, M.: Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresour. Technol. 102(2), 960–966 (2011)

    Article  Google Scholar 

  43. Xu, J., Shen, G.: Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresour. Technol. 102(2), 848–853 (2011)

    Article  Google Scholar 

  44. Adam, C., Peplinski, B., Michaelis, M., Kley, G., Simon, F.G.: Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage. 29(3), 1122–1128 (2009)

    Article  Google Scholar 

  45. Schoumans, O.F., Rulkens, W.H., Oenema, O., Ehlert, P.A.I. Phosphorus recovery from animal manure. Technical opportunities and agro-economical perspectives. Alterra, Wageningen UR: Wageningen, the Netherlands, http://content.alterra.wur.nl/Webdocs/PDFFiles/Alterrarapporten/AlterraRapport2158.pdf (2010)

  46. Desmidt, E., Ghyselbrecht, K., Monballiu, A., Verstraete, W., Meesschaert, B.D.: Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale. Water Sci. Technol. 65(11), 1954–1962 (2012)

    Article  Google Scholar 

  47. Abma, W.R., Driessen, W., Haarhuis, R., van Loosdrecht, M.C.M.: Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci. Technol. 61(7), 1715–1722 (2010)

    Article  Google Scholar 

  48. Montag, D., Gethke, K., Pinnekamp, J.: Different approaches for prospective sludge management incorporating phosphorus recovery. J. Residuals Sci. Technol. 4(4), 173–178 (2007)

    Google Scholar 

  49. Graeser, S., Postl, W., Bojar, H.P., Berlepsch, P., Arnbruster, T., Raber, T., Ettinger, K., Walter, F.: Struvite-(K), KMgPO4·6H2O, the potassium equivalent of struvite—a new mineral. Eur. J. Mineral. 20(4), 629–633 (2008)

    Article  Google Scholar 

  50. Latifian, M., Liu, J., Mattiasson, B.: Struvite-based fertilizer and its physical and chemical properties. Environ. Technol. 33(24), 2691–2697 (2012)

    Article  Google Scholar 

  51. Ryu, H.-D., Lim, C.-S., Kim, Y.-K., Kim, K.-Y., Lee, S.-I.: Recovery of struvite obtained from semiconductor wastewater and reuse as a slow-release fertilizer. Environ. Eng. Sci. 29(6), 540–548 (2012)

    Article  Google Scholar 

  52. Shu, L., Schneider, P., Jegatheesan, V., Johnson, J.: An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 97(17), 2211–2216 (2006)

    Article  Google Scholar 

  53. Nutrient recovery: State of the knowledge. Water Environment Research Foundation: United States, 2012; http://www.werf.org/i/a/ka/Nutrients.aspx

  54. Münch, E.V., Barr, K.: Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. Water Res. 35, 151–159 (2001)

    Article  Google Scholar 

  55. Jaffer, Y., Clark, T.A., Pearce, P., Parsons, P.A.: Potential phospohorus recovery by struvite formation. Water Res. 36, 1834–1842 (2002)

    Article  Google Scholar 

  56. Dockhorn, T.: About the economy of phosphorus recovery. In: Mavinic, D., Koch, F., Ashley, S. (eds.) International conference on nutrient recovery from wastewater streams. IWA Publishing, London (2009)

    Google Scholar 

  57. Battistoni, P., Bocadoro, R., Fatone, F., Pavan, P.: Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environ. Technol. 26, 975–982 (2005)

    Article  Google Scholar 

  58. Battistoni, P., Paci, B., Fatone, F., Pavan, P.: Phosphorus removal from supernatants at low concentration using packed and fluidised bed reactors. Ind. Eng. Chem. Res. 44, 6701–6707 (2005)

    Article  Google Scholar 

  59. Doyle, J.D., Parsons, S.A.: Struvite formation, control and recovery. Water Res. 36(16), 3925–3940 (2002)

    Article  Google Scholar 

  60. Kohler, J.: Phosphorus recycling: regulation and economic analysis. In: Valsami-Jones, E. (ed.) Phosphorus in environmental technologies, principles and applications. IWA publishing, London (2004)

    Google Scholar 

  61. Recovery of plant nutrients for a sustainable agriculture. Fraunhofer Institute for interfacial engineering and biotechnology IGB: Germany, 2012; http://www.igb.fraunhofer.de/content/dam/igb/en/documents/brochures/nutrient-recycling.pdf

  62. Cusick, D.R., Logan, B.E.: Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technol. 107, 110–115 (2012)

    Article  Google Scholar 

  63. Eggers, E., Dirkzwager, A.H., Van Der Honing, H.: Full-scale experiences with phosphate crystallisation in a crystalactor. Water Sci. Technol. 24(10), 333–334 (1991)

    Google Scholar 

  64. Szpyrkowicz, L., Ziliograndi, F.: Seasonal phosphorus removal in a Phostrip process. (1) 2 years plant performance. Water Res. 29(10), 2318–2326 (1995)

    Article  Google Scholar 

  65. Berg, U., Knoll, G., Kaschka, E., Kreutzer, V., Weidler, P.G., Nueesch, R.: P-RoC Phosphorus recovery from wastewater by crystallisation of calcium phosphate compounds. J. Residuals Sci. Tech. 4(3), 121–126 (2007)

    Google Scholar 

  66. Quan, X., Ye, C., Xiong, Y., Xiang, J., Wang, F.: Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J. Hazard. Mater. 178(1–3), 326–332 (2010)

    Article  Google Scholar 

  67. Wastewater technology fact sheet ammonia stripping; Technical report; USEPA: Washington, DC, United States, 2000; http://www.epa.gov/owm/mtb/ammonia_stripping.pdf

  68. Udert, K.M., Buckley, C.A., Wächtera, M., McArdella, C.S., Kohnd, T., Strandea, L., Zölliga, H., Huga, A., Obersone, A., Ettera, B. Technologies for the treatment of source-separated urine in the Thekwini municipality. In Proceedings of the WISA Biennal Conference: Mbombela, Mpumalanga, South Africa, 2014

  69. Collivignarelli, C., Bertanza, G., Baldi, M., Avezzu, F.: Ammonia stripping from MSW landfill leachate in bubble reactors: process modeling and optimization. Waste Manage. 16(5), 455–466 (1998)

    Article  Google Scholar 

  70. Magri, A., Béline, F., Dabert, P.: Feasibility and interest of the Anammox process as treatment alternative for anaerobic digester supernatants in manure processing—an overview. J. Environ. Manage. 131, 170–184 (2013)

    Article  Google Scholar 

  71. Dorset LGL ammonia stripper; Technical report; Dorset: Wageningen UR, The Netherlands. http://www.dorset.nu/nl/files/72.html

  72. Manuzon, R.B., Zhao, L.Y., Keener, H.M., Darr, M.J.: A prototype acid spray scrubber for absorbing ammonia emissions from exhaust fans of animal buildings. Trans. ASABE 50(4), 1395–1407 (2007)

    Article  Google Scholar 

  73. Arends, F., Franke, G., Grimm, E., Gramatte, W., Häuser, S., Hahne, J. Exhaust air treatment systems for animal housing facilities, techniques—performance—costs; KTBL-Schrift 464; KTBL: Darmstadt, Germany. http://www.thepoultrysite.com/articles/842/exhaust-air-treatment-systems-for-poultry-production-facilities-what-is-their-present-performance-spectrum (2008)

  74. Melse, R.W., Willers, H.C. Treatment of exhaust air of animal houses. Phase 1: Techniques and costs; Report 029; Agrotechnology & Food Innovations: Wageningen UR, the Netherlands, 2004; http://benthamopen.com/toasj/articles/V003/6TOASJ.pdf

  75. Melse, R.W., Oginka, N.W.M., Rulkens, W.H.: Air treatment techniques for abatement of emissions from intensive livestock production. Open Agric. J. 3, 6–12 (2009)

    Article  Google Scholar 

  76. Cooper, C.D., Alley, F.C. (eds.): Air pollution control: A design approach, 4th edn. Waveland Press Inc, Long Grove (2011)

    Google Scholar 

  77. De Hoop, J.G., Daatselaar, C.H.G., Doornewaard, G.J., Tomson, N.C. Mineral concentrates from manure: economic analysis and user experiences from the pilots for manure treatment in 2009 and 2010; Rapport, 2275000242; LEI: Wageningen UR, Den Haag, the Netherlands, http://www.wageningenur.nl/nl/Publicatie-details.htm?publicationId=publication-way-343039313038. (in Dutch) (2011)

  78. Velthof, G. L. Synthesis of the research in frame of the Pilot Mineral Concentrates; Alterra, Wageningen UR: Wageningen, the Netherlands. http://www.mestverwerken.wur.nl/Info/Bibliotheek/PDF/eindrap_minconcentraat/AlterraRapport2211.pdf. (in Dutch) (2011)

  79. Norddahl, B., Rohold, L. BIOREK principle. In: Proceedings of the Bioenergy’98 conference—Expanding Bioenergy Partnerships: Madison, Wisconsin (1998)

  80. Gerard, C.: Un pilote pour rejeter l’effluent en milieu natural. Réussir Porcs 85, 49–50 (2002)

    Google Scholar 

  81. Charlebois, Y.D.: lisier changé en eau potable. La Terre de chez nous 71, 1–2 (2000)

    Google Scholar 

  82. Semiat, R.: Energy issues in desalination processes. Environ. Sci. Technol. 42, 22 (2008)

    Article  Google Scholar 

  83. Moon, A.S., Lee, M. Energy consumption in forward osmosis desalination compared to other desalination techniques. Sci. Eng. Technol. 6 (2012)

  84. Johnson, G., Culkin, B., Stowell, L. Membrane filtration of manure wastewater. A comparison of conventional treatment methods and VSEP, a vibratory RO membrane system; Technical Article; New Logic Research: Emeryville, Canada. http://fr.scribd.com/doc/143403782/Membrane-Filtration-of-Manure-Wastewater (2004)

  85. Membrane filtration of hog manure: A cost-effective and environmentally sound solution. New Logic Research Inc.: Emeryville, Canada. http://www.vsep.com/pdf/HogManure.pdf (2008)

  86. Akoum, O., Jaffrin, M.Y., Ding, L.H.: Concentration of total milk proteins by high shear ultrafiltration in a vibrating membrane module. J. Membr. Sci. 247(1–2), 211–220 (2005)

    Article  Google Scholar 

  87. Chen, Z., Ngo, H.H., Guo, W.S., Listowski, A., O’Halloran, K., Thompson, M., Muthukaruppan, M.: Multi-criteria analysis towards the new end use of recycled water for household laundry: a case study in Sydney. Sci. Total Environ. 438, 59–65 (2012)

    Article  Google Scholar 

  88. Li, D., Zhang, X., Simon, G.P., Wang, H.: Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res. 47(1), 209–215 (2013)

    Article  Google Scholar 

  89. Sant’Anna, V., Ferreira Marczak, L.D., Tessaro, I.C.: Membrane concentration of liquid foods by forward osmosis: process and quality view. J. Food Eng. 111(3), 483–489 (2012)

    Article  Google Scholar 

  90. Zhao, S., Zou, L., Tang, C.Y., Mulcahy, D.: Recent developments in forward osmosis: opportunities and challenges. J. Membr. Sci. 396, 1–21 (2012)

    Article  Google Scholar 

  91. Ippersiel, D., Mondor, M., Lamarche, F., Tremblay, F., Dubreuil, J., Masse, L.: Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J. Environ. Manage. 95, 165–169 (2012)

    Article  Google Scholar 

  92. Mondor, M., Masse, L., Ippersiel, D., Lamarche, F., Masse, D.I.: Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresour. Technol. 99(15), 7363–7368 (2008)

    Article  Google Scholar 

  93. Decloux, M., Bories, A., Lewandowski, R., Fargues, C., Mersad, A., Lameloise, M.L., Bonnet, F., Dherbecourt, B., Osuna, L.N.: Interest of electrodialysis to reduce potassium level in vinasses. Preliminary experiments. Desalination 146(1–3), 393–398 (2002)

    Article  Google Scholar 

  94. Mondor, M., Ippersiel, D., Lamarche, F., Masse, L.: Fouling characterization of electrodialysis membranes used for the recovery and concentration of ammonia from swine manure. Bioresour. Technol. 100(2), 566–571 (2009)

    Article  Google Scholar 

  95. Transmembranechemosorption; Sustec, 2014; www.sustec.com

  96. Rulkens, W.H., Klapwijk, A., Willers, H.C.: Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges. Environ. Pollut. 102(1), 727–735 (1998)

    Article  Google Scholar 

  97. Norddahl, B., Horn, V.G., Larsson, M., du Preez, J.H., Christensen, K.A.: Membrane contacter for ammonia stripping, pilot scale experience and modelling. Desalination 199, 172–174 (2006)

    Article  Google Scholar 

  98. Ganrot, Z.: Use of zeolites for improved nutrient recovery from decentralized domestic wastewater. In: Inglezakis, V.J., Zorpas, A.A. (eds.) Handbook of natural zeolites. Bentham Science Publishers, Beijing (2012)

    Google Scholar 

  99. Wendling, L.A., Blomberg, P., Sarlin, T., Priha, O., Arnold, M.: Phosphorus sorption and recovery using mineral-based materials: sorption mechanisms and phytoavailability. Appl. Geochem. 2013(37), 157–169 (2013)

    Article  Google Scholar 

  100. Çelik, M.S., Ozdemir, B., Turan, M., KoyuncuI, A.G., Sarikaya, H.Z.: Removal of ammonia by natural clay minerals using fixed and fluidised bed column reactors. Water Sci. Technol. 1(1), 81–88 (2001)

    Google Scholar 

  101. Du, Q., Liu, S., Cao, Z., Wang, Y.: Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separ. Purif. Technol. 44, 229–234 (2005)

    Article  Google Scholar 

  102. Jorgensen, S.E., Libor, O., Grabir, K.L., Barkacs, K.: Ammonia removal by use of clinoptilolite. Water Res. 10(3), 213–224 (1976)

    Article  Google Scholar 

  103. Koon, J.H., Kaufman, W.J.: Ammonia removal from municipal wastewaters by ion exchange. J. WPCF 47(3), 448–465 (1975)

    Google Scholar 

  104. Wang, Q.H., Yang, Y.N., Yu, C., Huang, H., Kim, M., Feng, C.P.: Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Bioresource Technol. 102(14), 7064–7068 (2011)

    Article  Google Scholar 

  105. Weatherley, L.R., Miladinovic, N.D.: Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res. 38(20), 4305–4312 (2004)

    Article  Google Scholar 

  106. Wei, Y.X., Ye, Z.F., Wang, Y.L., Ma, M.G., Li, Y.F.: Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process. Environ. Technol. 32(11–12), 1337–1343 (2011)

    Article  Google Scholar 

  107. Zhang, M.L., Zhang, H.Y., Xu, D., Han, L., Niu, D.X., Zhang, L.Y.: Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes. Desalination 277(1–2), 46–53 (2011)

    Article  Google Scholar 

  108. Hedström, A.: Ion exchange of ammonium in zeolites: a literature review. J. Environ. Eng. 127(8), 673–681 (2001)

    Article  Google Scholar 

  109. Hankins, N.P., Pliankarom, S., Hilal, N.: Removal of NH4 + ion from NH4Cl solution using clinoptilolite: a dynamic study using a continuous packed-bed column in up-flow mode. Sep. Sci. Technol. 39(6), 1347–1364 (2004)

    Article  Google Scholar 

  110. Liu, C.H., Lo, K.V.: Ammonia removal from composting leachate using zeolite, I: characterization of the zeolite. J. Environ. Sci. Health 39(9), 1671–1688 (2001)

    Article  Google Scholar 

  111. Milan, Z., Sanchez, E., Weiland, P., Pozas, C., Borja, R., Mayari, R.: Ammonia removal from anaerobically treated piggery manure by ion exchange in columns packed with homoionic zeolite. J. Chem. Eng. 66(1), 65–71 (1997)

    Article  Google Scholar 

  112. Wang, Y., Liu, S., Han, T., Chuan, S., Zhu, T.: Ammonia removal from leachate solution using natural Chinese clinoptilolite. J. Hazard. Mater. 136(3), 735–740 (2006)

    Article  Google Scholar 

  113. Liberti, L., Boari, G., Passino, R.: Advanced wastewater treatment by ion exchange. Effluent Water Treat. 22(7), 253–257 (1982)

    Google Scholar 

  114. Hasan, M.R., Chakrabarti, R. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper No. 531; FAO: Rome, Italy. http://www.fao.org/docrep/012/i1141e/i1141e00.htm (2009)

  115. Shilton, A., Powell, N., Guieysse, B.: Plant based phosphorus recovery from wastewaters via algae and macrophytes. Curr. Opin. Biotechnol. 23(6), 1357–1378 (2012)

    Google Scholar 

  116. Ramjeed-Samad, M. Preliminary analysis of the nutritional content of duckweed and the quality of water that supports its growth in guyana. integrated water resources and coastal areas management. University of Guyana-Berbice: Guyana. http://cehi.org.lc/cef5/documents/CEF%20papers%20and%20presentations/PRESENTATIONS/Session%206/Marlyn%20Ramjeet-Samad.pdf (2010)

  117. DUCKWEED: A tiny aquatic plant with enormous potential for agriculture and environment; Food and Agricultural Organisation: United States. http://www.fao.org/ag/AGAinfo/resources/documents/DW/Dw2.htm (1999)

  118. Mohedano, R.A., Costa, R.H.R., Tavares, F.A., Filho, P.B.: High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 112, 98–104 (2012)

    Article  Google Scholar 

  119. Skillicorn, P., Spira, W., Journey, W. A. New aquatic farming system for developing countries; Technical working paper; the World Bank Emena technical department, agriculture division: Washington, DC, United States. http://documents.worldbank.org/curated/en/1993/03/699091/duckweed-aquaculture-new-aquatic-farming-system-developing-countries (1993)

  120. Mburu, N., Tebitendwa, S.M., van Bruggen, J.J.A., Rousseau, D.P.L., Lens, P.N.L.: Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works. J. Environ. Manage. 128, 220–225 (2013)

    Article  Google Scholar 

  121. Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sust. Energ. Rev. 19, 360–369 (2013)

    Article  Google Scholar 

  122. Muylaert, K., Sanders, J. Inventarisation aquatic biomass: Comparison between algae and agricultural crops; Agentschap NL: The Netherlands, http://edepot.wur.nl/163456. (in Dutch) (2010)

  123. Benemann, J. R. Opportunities and challenges in algae biofuels production; Position paper; Algae World 2008: Singapore. http://www.futureenergyevents.com/algae/whitepaper/algae_positionpaper.pdf (2008)

  124. Lavens, P., Sorgeloos, P. Manual on the production and use of live food for aquaculture; FAO Fisheries Technical Paper. No. 361; Food and Agricultural Organisation (FAO): Rome, Italy. http://fr.scribd.com/doc/137213880/Manual-on-the-Production-and-Use-of-Live-Food-for-Aquaculture (1996)

  125. Couteau, P., Sorgeloos, P.: The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J. Shellf. Res. 11, 467–476 (1992)

    Google Scholar 

  126. Demirbas, A.: Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage 42(11), 1357–1378 (2001)

    Article  Google Scholar 

  127. Lundquist, T., Woertz, I., Quinn, N., Benemann, J. A realistic technology and engineering assessment of algae biofuel production; Enerfy Biosciences Institute: University of California, United States, 2010; http://esd.lbl.gov/files/about/staff/nigelquinn/EBI_Algae_Biofuel_Report_2010.10.25.1616.pdf

  128. El-Shafai, S.A., El-Gohary, F.A., Nasr, F.A., Van Der Steen, N.P., Gijzen, H.J.: Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour. Technol. 98, 798–807 (2007)

    Article  Google Scholar 

  129. Bolland, M.D.A.: Effectiveness of Ecophos compared with single and coastal superphosphates. Fert. Res. 45(1), 37–49 (1996)

    Article  Google Scholar 

  130. Petzet, S., Peplinski, B., Cornel, P.: On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 46(12), 3769–3780 (2012)

    Article  Google Scholar 

  131. Rahman, M.M., Liu, Y., Kwag, J.H., Ra, C.: Recovery of struvite from animal wastewater and its nutrient leaching in soil. J. Hazard. Mater. 186(2–3), 2026–2030 (2011)

    Article  Google Scholar 

  132. Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M., Ra, C.S.: Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab. J. Chem. 7(1), 139–155 (2014)

    Article  Google Scholar 

  133. Thompson, L.B. Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy. Ph.D. Dissertation, Iowa State University, Ames, Iowa, United States (2013)

  134. United Nations Statistics Division Website; Sulfur deposition; http://unstats.un.org/unsd/default.htm [consulted May 12th 2014]

  135. Till, A.R.: Sulphur and sustainable agriculture. IFA, Paris (2010)

    Google Scholar 

  136. Gea-Messo P.T. Website; Ammoniumsulfate Crystallization; http://www.geamessopt.com/geacrystal/cmsresources.nsf/filenames/ammonium%20sulfate.pdf/$file/ammonium%20sulfate.pdf [consulted May 12th 2014]

  137. Glauser, J., Hossein, J., Chiyo, F. Controlled- and slow-release fertilizers. In Chemical Economics Handbook; IHS Chemical: United States, 2013

  138. Palmer, W. J.; Kay, H. Slow-Release Fertilizer: Strategic Market Assessment. University of South Florida: Tampa, Florida, United States, 2005 http://www.starsusa.org/USFFolder/Slow-ReleaseFertilizerReport.pdf

  139. Kruk, D.J., Elektorowicz, M., Oleszkiewicz, J.A.: Struvite precipitation and phosphorus removal using magnesium sacrificial anode. Chemosphere 101, 28–33 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the European Commission under the Interreg IVb Project Arbor and by the Environmental & Energy Technology Innovation Platform (MIP) under the project Nutricycle. The first author is also funded by the Natural Science and Engineering Research Council of Canada (NSERC), the Fonds de Recherche sur la Nature et les Technologies (FRQNT) and Primodal Inc. through a BMP Industrial Innovation Scholarship (BMP doctorat 178263). Peter Vanrolleghem holds the Canada Research Chair in Water Quality Modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Vaneeckhaute.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaneeckhaute, C., Lebuf, V., Michels, E. et al. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valor 8, 21–40 (2017). https://doi.org/10.1007/s12649-016-9642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9642-x

Keywords

Navigation