Skip to main content

Advertisement

Log in

Solar Greenhouse Drying of Wastewater Sludges Under Arid Climate

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Wastewater sludges were dried in an open greenhouse pilot in order to provide experimental data about solar greenhouse drying under an arid climate during hot and cold periods. Climatic conditions, solids contents and geometric dimensions were constantly measured. The shape change of samples was constantly recorded with digital scan. The results indicated that solar greenhouse drying reduced the moisture content from about 4 kg water/kg DS to 0.08 kg water/kg DS in hot period and to 0.2 kg water/kg DS in cold period in only 72 h. The higher values of drying rate were obtained in hot season. The maximum ranges obtained were 0.2 kg water/kg DS.h and 0.13 kg water/kg DS.h in hot and cold campaigns, respectively. Furthermore, a large volume reduction representing at least 80 % of initial volume was observed in both periods after 72 h of drying process. Also, shrinkage and cracks phenomena took place inside sludges. An improvement of the microbial condition of treated sludges was noted in hot campaign with a decrease by one order of magnitude after only 24 h for total and fecal coliforms and after 72 h for Clostridium perfringens, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus contents. These pathogenic bacteria were almost constant for fresh and dry sludges in cold period. The paper recommends the solar drying in hot as in cold periods under arid climate considering its average drying rate outside the rainy periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salihoglu, N.K., Pinarli, V., Salihoglu, G.: Solar drying in sludge management in Turkey. Renew. Energy 32, 1175–1661 (2007)

    Article  Google Scholar 

  2. Marmo, L.: Sewage sludge and the community waste strategy. In: Langenkamp, H., Marmo, L. (eds.) Workshop on Problems Around Sludge: Proceedings, pp. 17–24. Italy, Stresa (1999)

    Google Scholar 

  3. Slim, R., Zoughaib, A., Clodic, D.: Modeling of a solar and heat pump sludge drying system. Int. J. Refrig. 31(7), 1156–1168 (2008)

    Article  Google Scholar 

  4. Cieślik, B.M., Namieśnik, J., Konieczka, P.: Review of sewage sludge management: standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15 (2015)

    Article  Google Scholar 

  5. Arlabosse, P., Ferrasse, J.H., Lecompte, D., Crine, M., Dumont, Y., Léonard, A.: Efficient sludge thermal processing: from drying to thermal valorisation. In: Tsotsas, E., Mujumdar, A.S. (eds.) Mod Dry Technol: Energy Savings, vol. 4, pp. 295–329. (2012)

    Chapter  Google Scholar 

  6. Bennamoun, L., Arlabosse, P., Léonard, A.: Review on fundamental aspect of application of drying process to wastewater sludge. Renew. Sustain. Energy Rev. 28, 29–43 (2013)

    Article  Google Scholar 

  7. Roux, N., Jung, D., Pannejon, J., Lemoine, C.: Modeling of the solar drying process Solia. In: Proceeding of the 20th European symposium on computer aided process engineering (2010)

  8. Seginer, I., Bux, M.: Modeling solar drying rate of wastewater sludge. Dry. Technol. 24(11), 1163–1353 (2006)

    Article  Google Scholar 

  9. Seginer, I., Bux, M.: Prediction of evaporation rate in a solar dryer of sewage sludge. Agricultural Engineering International: CIGR E-Journal. 7, Manuscript EE 05 009 (2005)

  10. Bennamoun, L.: Solar drying of wastewater sludge: a review. Renew. Sustain. Energy Rev. 16(1), 1061–1073 (2012)

    Article  Google Scholar 

  11. Bennamoun, L., Belhamri, A., Ali-Mohamed, A.: Application of a diffusion model to predict drying kinetics changes under variable conditions: experimental and simulation study. Fluid Dyn. Mater. Process. 5, 177–191 (2009)

    Google Scholar 

  12. Bennamoun, L., Belhamri, A.: Numerical simulation of drying under variable external conditions: application to solar drying of seedless grapes. J. Food Eng. 76, 179–187 (2006)

    Article  Google Scholar 

  13. Kooli, S., Fadhel, A., Farhat, A., Belghith, A.: Drying of red pepper in open sun and green house conditions, Mathematical modeling and experimental validation. J. Food Eng. 79, 1094–1103 (2007)

    Article  Google Scholar 

  14. Standards, Moroccan: Norme Marocaine homologuée par arête du Ministre de l’Industrie. du Commerce et de la Mise à Niveau de l’Economie, Service de Normalisation Industrielle Marocaine (2006)

    Google Scholar 

  15. Mathioudakis, V.L., Kapagiannidis, A.G., Athanasoulia, E., Diamantis, V.I., Melidis, P., Aivasidis, A.: Extended dewatering of sewage sludge in solar drying plant. Desalin 248(1–3), 733–739 (2009)

    Article  Google Scholar 

  16. Lei, Z., Dezhen, C., Jinlong, X.: Sewage sludge solar drying practice and characteristics study. In: Proceedings of power engineering conference, IEEE (2009)

  17. Omid, M., Shafaei, A.: Temperature and relative humidity changes inside greenhouse. Int. Agrophys. 19, 153–158 (2005)

    Google Scholar 

  18. Belghit, A., Kouhila, M., Boutaleb, B.C.: Approche Expérimentale de la Cinétique de Séchage de la Verveine (Lippia Citriodora). Rev. Energ. Ren. 2, 87–97 (1999)

    Google Scholar 

  19. Léonard, A., Blacher, S., Marchot, P., Pirard, J.P., Crine, M.: Convective drying of wastewater sludges: influence of air temperature, superficial velocity and humidity on the kinetics. Dry. Technol. 23, 1667–1679 (2005)

    Article  Google Scholar 

  20. Léonard, A., Vandevenne, P., Salmon, T., Marchot, P., Crine, M.: Wastewater sludge convective drying: influence of sludge origin. Environ. Technol. 25, 1051–1057 (2004)

    Article  Google Scholar 

  21. Lowe, P.: Developments in the thermal drying of sewage sludge. J. Chart. Inst. Water Environ. Manag. 9, 307–316 (1995)

    Article  Google Scholar 

  22. Chen, G., Yue, P.L., Mujumdar, A.S.: Sludge dewatering and drying. Dry. Technol. 20(4), 883–916 (2002)

    Article  Google Scholar 

  23. Hsu, J.P., Tao, T., Su, A., Mujumdar, A.S., Lee, D.J.: Model for sludge cake drying accounting for developing cracks. Dry. Technol. 28, 922–926 (2010)

    Article  Google Scholar 

  24. Ruiz, T., Wisniewski, C.: Correlation between dewatering and hydro-textural characteristics of sewage sludge during drying. Sep. Purif. Technol. 61, 204–210 (2008)

    Article  Google Scholar 

  25. Ruiz, T., Wisniewski, C., Kaosol, T., Persin, F.: Influence of organic content in dewatering and shrinkage of urban residual sludge under controlled atmospheric drying. Process Saf. Environ. Prot. 85, 104–110 (2007)

    Article  Google Scholar 

  26. Léonard, A., Blacher, S., Marchot, P., Pirard, J.P., Crine, M.: Moisture profiles determination during convective drying using X-ray microtomography. Can. J. Chem. Eng. 83, 127–131 (2005)

    Article  Google Scholar 

  27. Léonard, A., Blacher, S., Marchot, P., Pirard, J.P., Crine, M.: Measurement of shrinkage and cracks associated to convective drying of soft materials by X-ray microtomography. Dry. Technol. 22, 1695–1708 (2004)

    Article  Google Scholar 

  28. Léonard, A., Blacher, S., Pirard, R., Marchot, P., Pirard, J.P., Crine, M.: Multiscale texture characterization of wastewater sludges dried in a convective rig. Dry. Technol. 21, 1507–1526 (2003)

    Article  Google Scholar 

  29. Kemp, I.C., Fyhr, C., Laurent, S., Roques, M.A., Groenewold, C.E., Tsotsas, E., et al.: Methods for processing experimental drying kinetics data. Dry. Technol. 19(1), 15–34 (2001)

    Article  Google Scholar 

  30. vanBrakel, J.: Mass transfer in convective drying. In: Mujumdar, A.S. (ed.) Advances in Drying I. Hemisphere Publishing Corporation, New York (1980)

    Google Scholar 

  31. Bennamoun, L., Kahlerras, L., Michel, F., Courard, L., Salmon, T., Fraikin, L., et al.: Determination of moisture diffusivity during drying of mortar cement: experimental and modeling study. Int. J. Energy Eng. 3(1), 1–6 (2013)

    Google Scholar 

  32. Liang, C., Das, K.C., McClendon, R.W.: The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol. 86, 131–137 (2003)

    Article  Google Scholar 

  33. Öğleni, N., Özdemir, S.: Pathogen reduction effects of solar drying and soil application in sewage sludge. Turk. J. Agric. For. 34, 509–515 (2010)

    Google Scholar 

  34. Albino, D.S., Barros, P.R., da Rocha Neto, J.S., van Haandel, A.C., Caviacanti, P.F.: Modelling and estimation of physical parameters in a sludge drying system. Water Sci. Technol. 45, 389–396 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Oussama Belloulid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belloulid, M.O., Hamdi, H., Mandi, L. et al. Solar Greenhouse Drying of Wastewater Sludges Under Arid Climate. Waste Biomass Valor 8, 193–202 (2017). https://doi.org/10.1007/s12649-016-9614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9614-1

Keywords

Navigation