Skip to main content

Advertisement

Log in

Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biofuels and biomaterials are gaining increased attention because of their ecofriendly nature and renewable precursors. Biochar is a recalcitrant carbonaceous product obtained from pyrolysis of biomass and other biogenic wastes. Biochar has found many notable applications in diverse areas because of its versatile physicochemical properties. Some of the promising biochar applications discussed in this paper include char gasification and combustion for energy production, soil remediation, carbon sequestration, catalysis, as well as development of activated carbon and specialty materials with biomedical and industrial uses. The pyrolysis temperature and heating rates are the limiting factors that determine the biochar properties such as fixed carbon, volatile matter, mineral phases, surface area, porosity and pore size distribution, alkalinity, electrical conductivity, cation-exchange capacity, etc. A broad investigation of these properties determining biochar application is rare in literature. With this objective, this paper comprehensively reviews the evolution of biochar from several lignocellulosic biomasses influenced by pyrolysis temperature and heating rate. Lower pyrolysis temperatures produce biochar with higher yields, and greater levels of volatiles, electrical conductivity and cation-exchange capacity. Conversely, higher temperatures generate biochar with a greater extent of aromatic carbon, alkalinity and surface area with microporosity. Nevertheless, this coherent review summarizes the valorization potentials of biochar for various environmental, industrial and biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Energy Agency (IEA): World Energy Outlook 2007: China and India Insights. IEA, Paris (2007)

    Google Scholar 

  2. Wu, X., McLaren, J., Madl, R., Wang, D.: Biofuels from lignocellulosic biomass. In: Singh, O.V., Harvey, S.P. (eds.) Sustainable Biotechnology: Sources of Renewable Energy, pp. 19–41. Springer, Netherlands (2010)

    Chapter  Google Scholar 

  3. Shafiee, S., Topal, E.: When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009)

    Article  Google Scholar 

  4. Pu, Y., Zhang, D., Singh, P.M., Ragauskas, A.J.: The new forestry biofuels sector. Biofuels Bioprod. Biorefin. 2, 58–73 (2008)

    Article  Google Scholar 

  5. Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52, 858–875 (2011)

    Article  Google Scholar 

  6. Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., Dalai, A.K.: Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefin. 4, 157–191 (2014)

    Article  Google Scholar 

  7. Barnabe, D., Bucchi, R., Rispoli, A., Chiavetta, C., Porta, P.L., Bianchi, C.L., Pirola, C., Boffito, D.C., Carvoli, G.: Land use change impacts of biofuels: a methodology to evaluate biofuel sustainability. In: Fang, Z. (ed.) Biofuels—Economy, Environment and Sustainability, pp. 3–37. InTech, Rijeka (2013)

    Google Scholar 

  8. Briens, C., Piskorz, J., Berruti, F.: Biomass valorization for fuel and chemicals production—a review. Int. J. Chem. React. Eng. 6, 1542–6580 (2008)

    Google Scholar 

  9. Lehmann, J.: Bio-energy in the black. Front. Ecol. Environ. 5, 381–387 (2007)

    Article  Google Scholar 

  10. Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R.: A review of biochar and its use and function in soil. In: Sparks, D.L. (ed.) Advances in Agronomy, pp. 47–82. Academic Press, Burlington (2010)

    Google Scholar 

  11. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011)

    Article  Google Scholar 

  12. Marousek, J.: Significant breakthrough in biochar cost reduction. Clean Technol. Environ. Policy 16, 1821–1825 (2014)

    Article  Google Scholar 

  13. Nanda, S., Azargohar, R., Kozinski, J.A., Dalai, A.K.: Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenergy Res. 7, 174–191 (2014)

    Article  Google Scholar 

  14. Azargohar, R., Nanda, S., Kozinski, J.A., Dalai, A.K., Sutarto, R.: Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125, 90–100 (2014)

    Article  Google Scholar 

  15. Azargohar, R., Nanda, S., Rao, B.V.S.K., Dalai, A.K.: Slow pyrolysis of deoiled Canola meal: product yields and characterization. Energy Fuels 27, 5268–5279 (2013)

    Google Scholar 

  16. Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493 (2013)

    Article  Google Scholar 

  17. Freel, B.A., Graham, R.G.: Method and apparatus for a circulating bed transport fast pyrolysis reactor system. United States Patent 5,792,340 (1998)

  18. Ekstrom, C., Lindman, N., Pettersson, R.: Catalytic conversion of tars, carbon black and methane from pyrolysis/gasification of biomass. In: Overend, R.P., Milne, T.A., Mudge, L.K. (eds.) Fundamentals of Thermochemical Biomass Conversion, pp. 601–618. Elsevier Applied Science Publishers, Springer, Netherlands (1985)

    Chapter  Google Scholar 

  19. Lira, C.S., Berruti, F.M., Palmisano, P., Berruti, F., Briens, C., Pecora, A.A.B.: Fast pyrolysis of Amazon tucuma (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor. J. Anal. Appl. Pyrolysis 99, 23–31 (2013)

    Article  Google Scholar 

  20. Busse, M.D., Cochran, P.H., Hopkins, W.E., Johnson, W.H., Riegel, G.M., Fiddler, G.O., Ratcliff, A.W., Shestak, C.J.: Developing resilient ponderosa pine forests with mechanical thinning and prescribed fire in central Oregon’s pumice region. Can. J. For. Res. 39, 1171–1185 (2009)

    Article  Google Scholar 

  21. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, Technical Report. Oak Ridge National Laboratory, Oak Ridge (2005)

    Google Scholar 

  22. Gan, J., Smith, C.T.: Availability of logging residues and potential for electricity production and carbon displacement in the USA. Biomass Bioenergy 30, 1011–1020 (2006)

    Article  Google Scholar 

  23. Badger, P.C., Fransham, P.: Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—a preliminary assessment. Biomass Bioenergy 30, 321–325 (2006)

    Article  Google Scholar 

  24. Leber, J.: Biochar: one way to deal with more fire-prone forests. The New York Times: Energy and Environment. www.nytimes.com/cwire/2009/05/01/01climatewire-biochar-one-way-to-deal-with-more-fire-prone-12208.html (2009). Accessed 2 Sept 2014

  25. Mohan, D., Pittman Jr, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)

    Article  Google Scholar 

  26. Samanya, J., Hornung, A., Apfelbacher, A., Vale, P.: Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. J. Anal. Appl. Pyrolysis 94, 120–125 (2012)

    Article  Google Scholar 

  27. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)

    Article  Google Scholar 

  28. Maschio, G., Koufopanos, C., Lucchesi, A.: Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 42, 219–231 (1992)

    Article  Google Scholar 

  29. Bridgwater, A.V.: Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 51, 3–22 (1999)

    Article  Google Scholar 

  30. Wagenaar, B.M., Prins, W., van Swaaij, W.P.M.: Flash pyrolysis kinetics of pine wood. Fuel Process. Technol. 36, 291–298 (1993)

    Article  Google Scholar 

  31. Samolada, M.C., Vasalos, I.A.: A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel 70, 883–889 (1991)

    Article  Google Scholar 

  32. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)

    Article  Google Scholar 

  33. Bridgwater, A.V., Peacocke, G.V.C.: Fast pyrolysis processes for biomass. Renew. Sustain. Energy Rev. 4, 1–73 (2000)

    Article  Google Scholar 

  34. Kanaujia, P.K., Sharma, Y.K., Garg, M.O., Tripathi, D., Singh, R.: Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J. Anal. Appl. Pyrolysis 105, 55–74 (2014)

    Article  Google Scholar 

  35. Luo, Z., Wang, S., Cen, K.: A model of wood flash pyrolysis in fluidized bed reactor. Renew. Energy 30, 377–392 (2005)

    Article  Google Scholar 

  36. Titiladunayo, I.F., McDonald, A.G., Fapetu, O.P.: Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz 3, 311–318 (2012)

    Article  Google Scholar 

  37. Demiral, I., Kul, C.S.: Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J. Anal. Appl. Pyrolysis 107, 17–24 (2014)

    Article  Google Scholar 

  38. Scott, D.S., Piskorz, J.: The continuous flash pyrolysis of biomass. Can. J. Chem. Eng. 62, 404–412 (1984)

    Article  Google Scholar 

  39. Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M.: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59, 2501–2510 (2011)

    Article  Google Scholar 

  40. Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M.: Dynamic molecular structure of plant-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)

    Article  Google Scholar 

  41. Xu, R., Ferrante, L., Briens, C., Berruti, F.: Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed. J. Anal. Appl. Pyrolysis 86, 58–65 (2009)

    Article  Google Scholar 

  42. Horne, P.A., Williams, P.T.: Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75, 1051–1059 (1996)

    Article  Google Scholar 

  43. Kucuk, M.M., Demirbas, A.: Biomass conversion processes. Energy Convers. Manag. 38, 151–165 (1997)

    Article  Google Scholar 

  44. Chen, B., Chen, Z.: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76, 127–133 (2009)

    Article  Google Scholar 

  45. Park, H.J., Park, Y.K., Dong, J.I., Kim, J.S., Jeon, J.K., Kim, S.S., Kim, J., Song, B., Park, J., Lee, K.J.: Pyrolysis characteristics of Oriental white oak: kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Process. Technol. 90, 186–195 (2009)

    Article  Google Scholar 

  46. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J., Schomberg, H.: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195–206 (2009)

    Google Scholar 

  47. Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S.: Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536–544 (2012)

    Article  Google Scholar 

  48. Chen, B., Zhou, D., Zhu, L.: Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143 (2008)

    Article  Google Scholar 

  49. Song, W., Guo, M.: Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 94, 138–145 (2012)

    Article  Google Scholar 

  50. Karaosmanoglu, F., Isigigur-Ergudenler, A., Sever, A.: Biochar from the straw-stalk of rapeseed plant. Energy Fuels 14, 336–339 (2000)

    Article  Google Scholar 

  51. Buah, M.K., Cunliffe, A.M., Williams, P.T.: Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. 85, 450–457 (2007)

    Article  Google Scholar 

  52. Fu, P., Hu, S., Xiang, J., Sun, L., Su, S., Wang, J.: Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis 98, 177–183 (2012)

    Article  Google Scholar 

  53. Onay, O.: Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol. 88, 523–531 (2007)

    Article  Google Scholar 

  54. Zandersons, J., Gravitis, J., Kokorevics, A., Zhurinsh, A., Bikovens, O., Tardenaka, A., Spince, B.: Studies of the Brazilian sugarcane bagasse carbonisation process and products properties. Biomass Bioenergy 17, 209–219 (1999)

    Article  Google Scholar 

  55. Bedmutha, R., Booker, C.J., Ferrante, L., Briens, C., Berruti, F., Yeunga, K.K.C., Scott, I., Conn, K.: Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. J. Anal. Appl. Pyrolysis 90, 224–231 (2011)

    Article  Google Scholar 

  56. Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24, 4638–4645 (2010)

    Article  Google Scholar 

  57. Antal, M.J., Gronli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)

    Article  Google Scholar 

  58. Boucher, M.E., Chaala, A., Roy, C.: Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19, 337–350 (2000)

    Article  Google Scholar 

  59. Demirbas, M.F.: Current technologies for biomass conversion into chemicals and fuels. Energy Sources Part A 28, 1181–1188 (2006)

    Article  Google Scholar 

  60. Jayasinghe, P., Hawboldt, K.: A review of bio-oils from waste biomass: focus on fish processing waste. Renew. Sustain. Energy Rev. 16, 798–821 (2012)

    Article  Google Scholar 

  61. Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A.: Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87, 151–157 (2012)

    Article  Google Scholar 

  62. Dumana, G., Okutucu, C., Ucar, S., Stahl, R., Yanik, J.: The slow and fast pyrolysis of cherry seed. Bioresour. Technol. 102, 1869–1878 (2011)

    Article  Google Scholar 

  63. Lee, J.W., Kidder, M., Evans, B.R., Paik, S., Buchanan III, A.C., Garten, C.T., Brown, R.C.: Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol. 44, 7970–7974 (2010)

    Article  Google Scholar 

  64. Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomas Bioenergy 34, 67–74 (2010)

    Article  Google Scholar 

  65. Cao, X., Harris, W.: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222–5228 (2010)

    Article  Google Scholar 

  66. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S.: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428 (2012)

    Article  Google Scholar 

  67. Azargohar, R., Jacobson, K.L., Powell, E.E., Dalai, A.K.: Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J. Anal. Appl. Pyrolysis 104, 330–340 (2013)

    Article  Google Scholar 

  68. Demirbas, A.: Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 24, 141–150 (1999)

    Article  Google Scholar 

  69. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G.: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 41, 990–1000 (2012)

    Article  Google Scholar 

  70. Tsai, W.T., Lee, M.K., Chang, Y.M.: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis 76, 230–237 (2006)

    Article  Google Scholar 

  71. Kim, P., Johnson, A., Edmunds, C.W., Radosevich, M., Vogt, F., Rials, T.G., Labbe, N.: Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels 25, 4693–4703 (2011)

    Article  Google Scholar 

  72. Schmidt, M.W.I., Noack, A.G.: Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–793 (2000)

    Article  Google Scholar 

  73. Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H.: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80, 935–940 (2010)

    Article  Google Scholar 

  74. Manya, J.J.: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939–7954 (2012)

    Article  Google Scholar 

  75. Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013)

    Article  Google Scholar 

  76. Stefanidis, S.D., Kalogiannis, K.G., Iliopoulou, E.F., Michailof, C.M., Pilavachi, P.A., Lappas, A.A.: A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 105, 143–150 (2014)

    Article  Google Scholar 

  77. Brown, J.C., Renvoize, S., Chiang, Y.C., Ibaragi, Y., Flavell, R., Greef, J., Huang, L., Hsu, T.W., Kim, D.S., Hastings, A., Schwarz, K., Stampfl, P., Valentine, J., Yamada, T., Xi, Q., Donnison, I.: Developing Miscanthus for bioenergy. In: Halford, N.G., Karp, A. (eds.) Energy Crops, pp. 301–321. The Royal Society of Chemistry, Cambridge (2011)

    Google Scholar 

  78. Ro, K.S., Cantrell, K.B., Hunt, P.G.: High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind. Eng. Chem. Res. 49, 10125–10131 (2010)

    Article  Google Scholar 

  79. Pastorova, I., Botto, R.E., Arisz, P.W., Boon, J.J.: Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr. Res. 262, 27–47 (1994)

    Article  Google Scholar 

  80. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)

    Article  Google Scholar 

  81. Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35, 298–307 (2011)

    Article  Google Scholar 

  82. Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D.: Pyrolysis behaviour and kinetics of biomass derived materials. J. Anal. Appl. Pyrolysis 62, 331–349 (2002)

    Article  Google Scholar 

  83. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105, 40–76 (2013)

    Article  Google Scholar 

  84. Nanda, S., Mohanty, P., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6, 663–677 (2013)

    Article  Google Scholar 

  85. Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45, 651–671 (2004)

    Article  Google Scholar 

  86. Xu, R.K., Xiao, S.C., Yuan, J.H., Zhao, A.Z.: Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour. Technol. 102, 10293–10298 (2011)

    Article  Google Scholar 

  87. Moon, D.H., Park, J.W., Chang, Y.Y., Ok, Y.S., Lee, S.S., Ahmad, M., Koutsospyros, A., Park, J.H., Baek, K.: Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 20, 8464–8471 (2013)

    Article  Google Scholar 

  88. Lehmann, J., Joseph, S.: Biochar for Environmental Management: Science and Technology. Earthscan, Sterling (2009)

    Google Scholar 

  89. Melligan, F., Auccaise, R., Novotny, E.H., Leahy, J.J., Hayes, M.H.B., Kwapinski, W.: Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresour. Technol. 102, 3466–3470 (2011)

    Article  Google Scholar 

  90. Cetin, E., Moghtaderi, B., Gupta, R., Wall, T.F.: Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139–2150 (2004)

    Article  Google Scholar 

  91. Sueyasu, T., Oike, T., Mori, A., Kudo, S., Norinaga, K., Hayashi, J.: Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassium-loaded woody biomass. Energy Fuels 26, 199–208 (2012)

    Article  Google Scholar 

  92. Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008)

    Article  Google Scholar 

  93. Nzihou, A., Stanmore, B., Sharrock, P.: A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58, 305–317 (2013)

    Article  Google Scholar 

  94. Li, X., Hayashi, J.I., Li, C.Z.: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 85, 1509–1517 (2006)

    Article  Google Scholar 

  95. Asadullah, M., Zhang, S., Min, Z., Yimsiri, P., Li, C.Z.: Effects of biomass char structure on its gasification reactivity. Bioresour. Technol. 101, 7935–7943 (2010)

    Article  Google Scholar 

  96. Salleh, M.A.M., Kisiki, N.H., Yusuf, H.M., Ghani, W.A.W.A.K.: Gasification of biochar from empty fruit bunch in a fluidized bed reactor. Energies 3, 1344–1352 (2010)

    Article  Google Scholar 

  97. Rostrup-Nielsen, J.R.: Conversion of hydrocarbons and alcohols for fuel cells. Phys. Chem. Chem. Phys. 3, 283–288 (2001)

    Article  Google Scholar 

  98. Pakpour, F., Najafpour, G., Tabatabaei, M., Tohidfar, M., Younesi, H.: Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT. Bioproc. Biosyst. Eng. 37, 923–930 (2014)

    Article  Google Scholar 

  99. Levin, D.B., Pitt, L., Love, M.: Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrog. Energy 29, 173–185 (2004)

    Article  Google Scholar 

  100. Maness, P.C., Weaver, P.F.: A potential bioremediation role for photosynthetic bacteria. In: Sikdal, S.K., Irvine, R.L. (eds.) Bioremediation: principles and practice, vol. 2. Technomic Publishing Co Inc, Lancaster (1997)

    Google Scholar 

  101. Shabangu, S., Woolf, D., Fisher, E.M., Angenent, L.T., Lehmann, J.: Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel 117, 742–748 (2014)

    Article  Google Scholar 

  102. Klier, K., Chatikavanij, V., Herman, R.G., Simmons, G.W.: Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide. J. Catal. 74, 343–360 (1982)

    Article  Google Scholar 

  103. Unruh, D., Pabst, K., Schaub, G.: Fischer–Tropsch synfuels from biomass: maximizing carbon efficiency and hydrocarbon yield. Energy Fuels 24, 2634–2641 (2010)

    Article  Google Scholar 

  104. Azargohar, R., Dalai, A.K.: Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 129–132, 762–773 (2006)

    Google Scholar 

  105. Dalai, A.K., Majumdar, A., Chowdhury, A., Tollefson, E.L.: The effects of pressure and temperature on the catalytic oxidation of hydrogen sulfide in natural gas and regeneration of the catalyst to recover the sulfur produced. Can. J. Chem. Eng. 71, 75–82 (1993)

    Article  Google Scholar 

  106. Juntgen, H.: Activated carbon as catalyst support: a review of new research results. Fuel 65, 1436–1446 (1986)

    Article  Google Scholar 

  107. Kalyani, P., Anitha, A.: Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrog. Energy 38, 4034–4045 (2013)

    Article  Google Scholar 

  108. Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., Wexler, C., Pfeifer, P.: Nanospace engineering of KOH activated carbon. Nanotechnology 23(015401), 1–7 (2012)

    Google Scholar 

  109. Ioannidou, O., Zabaniotou, A.: Agricultural residues as precursors for activated carbon production—a review. Renew. Sustain. Energy Rev. 11, 1966–2005 (2007)

    Article  Google Scholar 

  110. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85, 833–846 (2007)

    Article  Google Scholar 

  111. Suhas, Carrott, P.J.M., Ribeiro Carrott, M.M.L.: Lignin—from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98, 2301–2312 (2007)

    Article  Google Scholar 

  112. Fan, M., Marshall, W., Daugaard, D., Brown, R.C.: Steam activation of chars produced from oat hulls and corn stover. Bioresour. Technol. 93, 103–107 (2004)

    Article  Google Scholar 

  113. Zhang, T., Walawender, W.P., Fan, L.T., Fan, M., Daugaard, D., Brown, R.C.: Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J. 105, 53–59 (2004)

    Article  Google Scholar 

  114. Aygün, A., Yenisoy-Karakaş, S., Dumana, I.: Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 66, 189–195 (2003)

    Article  Google Scholar 

  115. Kadirvelu, K., Namasivayam, C.: Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 7, 471–478 (2003)

    Article  Google Scholar 

  116. Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., Araki, T.: Natural gas storage in activated carbon pellets without a binder. Carbon 40, 87–93 (2002)

    Article  Google Scholar 

  117. Otowa, T., Nojima, Y., Miyazaki, T.: Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon 35, 1315–1319 (1997)

    Article  Google Scholar 

  118. Ahmadpour, A., Do, D.D.: The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471–479 (1996)

    Article  Google Scholar 

  119. López, F.A., Centeno, T.A., Rodríguez, O., Alguacil, F.J.: Preparation and characterization of activated carbon from the char produced in the thermolysis of granulated scrap tyres. J. Air Waste Manag. Assoc. 63, 534–544 (2013)

    Article  Google Scholar 

  120. Merchant, A.A., Petrich, M.A.: Pyrolysis of scrap tires and conversion of chars to activated carbon. AIChE J. 39, 1370–1376 (1993)

    Article  Google Scholar 

  121. Sircar, S., Golden, T.C., Rao, M.B.: Activated carbon for gas separation and storage. Carbon 34, 1–12 (1996)

    Article  Google Scholar 

  122. Guo, D., Shi, Q., He, B., Yuan, X.: Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater. J. Hazard. Mater. 186, 1788–1793 (2011)

    Article  Google Scholar 

  123. Özkaya, B.: Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater. B129, 158–163 (2006)

    Article  Google Scholar 

  124. Hamdaoui, O., Naffrechoux, E., Tifouti, L., Pétrier, C.: Effects of ultrasound on adsorption–desorption of p-chlorophenol on granular activated carbon. Ultrason. Sonochem. 10, 109–114 (2003)

    Article  Google Scholar 

  125. Ao, C.H., Lee, S.C.: Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 60, 103–109 (2005)

    Article  Google Scholar 

  126. Yates, M., Blanco, J., Avila, P., Martin, M.P.: Honeycomb monoliths of activated carbons for effluent gas purification. Microporous Mesoporous Mater. 37, 201–208 (2000)

    Article  Google Scholar 

  127. Graydon, J.W., Zhang, X., Kirk, D.W., Jia, C.Q.: Sorption and stability of mercury on activated carbon for emission control. J. Hazard. Mater. 168, 978–982 (2009)

    Article  Google Scholar 

  128. Hu, X., Lei, L., Chu, H.P., Yue, P.L.: Copper/activated carbon as catalyst for organic wastewater treatment. Carbon 37, 631–637 (1999)

    Article  Google Scholar 

  129. Zazo, J.A., Casas, J.A., Mohedano, A.F., Rodríguez, J.J.: Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B Environ. 65, 261–268 (2006)

    Article  Google Scholar 

  130. Minocha, A., Herold, D.A., Barth, J.T., Gideon, D.A., Spyker, D.A.: Activated charcoal in oral ethanol absorption: lack of effect in humans. J. Toxicol. Clin. Toxicol. 24, 225–234 (1986)

    Article  Google Scholar 

  131. Decker, W.J., Combs, H.F., Corby, D.G.: Adsorption of drugs and poisons by activated charcoal. Toxicol. Appl. Pharmacol. 13, 454–460 (1968)

    Article  Google Scholar 

  132. Favin, F.D., Klein-Schwartz, W., Oderda, G.M., Rose, S.R.: In vitro study of lithium carbonate adsorption by activated charcoal. Clin. Toxicol. 26, 443–450 (1988)

    Google Scholar 

  133. Olson, K.R.: Activated charcoal for acute poisoning: one toxicologist’s journey. J. Med. Toxicol. 6, 190–198 (2010)

    Article  Google Scholar 

  134. Cooney, D.O.: Activated charcoal in medical applications. Marcel Dekker, New York (1995)

    Book  Google Scholar 

  135. Chin, L., Picchioni, A.L., Bourn, W.M., Laird, H.E.: Optimal antidotal dose of activated charcoal. Toxicol. Appl. Pharmacol. 26, 103–108 (1973)

    Article  Google Scholar 

  136. Jurgens, G., Hoegberg, L.C., Graudal, N.A.: The effect of activated charcoal on drug exposure in healthy volunteers: a meta-analysis. Clin. Pharmacol. Ther. 85, 501–505 (2009)

    Article  Google Scholar 

  137. Erickson, C.: Historical ecology and future explorations. In: Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds.) Amazonian Dark Earths: Origin, Properties, Management, pp. 455–493. Kluwer Academic Publishers, Netherlands (2003)

    Google Scholar 

  138. Gundale, M.J., DeLuca, T.H.: Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For. Ecol. Manag. 231, 86–93 (2006)

    Article  Google Scholar 

  139. Pietikainen, J., Kiikkila, O., Fritze, H.: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89, 231–242 (2000)

    Article  Google Scholar 

  140. Novtny, E.H., Deazevedo, E.R., Bonamba, T.J., Cunha, T.J.F., Madari, B.E., Benites, V.M., Hayes, M.H.B.: Studies of the compositions of humic acids from amazonian dark earth soils. Environ. Sci. Technol. 41, 400–405 (2007)

    Article  Google Scholar 

  141. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E.: Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011)

    Article  Google Scholar 

  142. Seifritz, W.: Should we store carbon in charcoal? Int. J. Hydrog. Energy 18, 405–407 (1993)

    Article  Google Scholar 

  143. Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A.: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010)

    Article  Google Scholar 

  144. Lehmann, J., Gaunt, J., Rondon, M.: Biochar sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Glob. Change 11, 403–427 (2006)

    Article  Google Scholar 

  145. Nguyen, B., Lehmann, J., Hockaday, W.C., Joseph, S., Masiello, C.A.: Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331 (2010)

    Article  Google Scholar 

  146. Major, J., Lehmann, J., Rondon, M., Goodale, C.: Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Change Biol. 16, 1366–1379 (2010)

    Article  Google Scholar 

  147. Sombroek, W., Ruivo, M.D.L., Fearnside, P.M., Glaser, B., Lehmann, J.: Amazonian dark earths as carbon stores and sinks. In: Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds.) Amazonian Dark Earths: Origin, Properties, Management, pp. 125–139. Kluwer Academic Publishers, Netherlands (2003)

    Google Scholar 

  148. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizao, F.J., Petersen, J., Neves, E.G.: Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006)

    Article  Google Scholar 

  149. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011)

    Article  Google Scholar 

  150. Graber, E.R., Harel, Y.M., Kolton, M., Cytryn, E., Silber, A., David, D.R., Tsechansky, L., Borenshtein, M., Elad, Y.: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337, 481–496 (2010)

    Article  Google Scholar 

  151. Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C.: Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46, 450–456 (2010)

    Article  Google Scholar 

  152. Rillig, M.C., Wagner, M., Salem, M., Antunes, P.M., George, C., Ramke, H.G., Titirici, M.M., Antonietti, M.: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45, 238–242 (2010)

    Article  Google Scholar 

  153. Berglund, L.M., DeLuca, T.H., Zackrisson, T.H.: Activated carbon amendments of soil alters nitrification rates in Scots pine forests. Soil Biol. Biochem. 36, 2067–2073 (2004)

    Article  Google Scholar 

  154. Kumar, S., Jain, M.C., Chhonkar, P.K.: A note on the stimulation of biogas production from cattle dung by addition of charcoal. Biol. Wastes 20, 1209–1215 (1987)

    Article  Google Scholar 

  155. Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., Horie, T.: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 111, 81–84 (2009)

    Article  Google Scholar 

  156. Watson, R.T., Noble, R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J.: Land Use, Land-Use Change, and Forestry. Intergovernmental Panel on Climatic Change Special Report. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  157. Renner, R.: Rethinking biochar. Environ. Sci. Technol. 41, 5932–5933 (2007)

    Article  Google Scholar 

  158. Lehmann, J.: A handful of carbon. Nature 447, 143–144 (2007)

    Article  Google Scholar 

  159. Lee, J.W., Li, R.: Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production. Energy Convers. Manag. 44, 1535–1546 (2003)

    Article  Google Scholar 

  160. Laird, D.A., Brown, R.C., Amonette, J.E., Lehmann, J.: Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefin. 3, 547–562 (2009)

    Article  Google Scholar 

  161. Nanda, S., Azargohar, R., Dalai, A.K., Kozinski, J.A.: An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 50, 925–941 (2015)

    Article  Google Scholar 

  162. Mathews, J.A.: Carbon-negative biofuels. Energy Policy 36, 940–945 (2008)

    Article  Google Scholar 

  163. Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)

    Article  Google Scholar 

  164. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., Zhang, L.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energ. 34, 4889–4899 (2009)

    Article  Google Scholar 

  165. Wang, H., Yoshio, M.: Graphite, a suitable positive electrode material for high-energy electrochemical capacitors. Electrochem. Commun. 8, 1481–1486 (2006)

    Article  Google Scholar 

  166. Xu, B., Wu, F., Chen, S., Zhang, C., Cao, G., Yang, Y.: Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim. Acta 52, 4595–4598 (2007)

    Article  Google Scholar 

  167. Fang, B., Binder, L.: Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor. Electrochim. Acta 52, 6916–6921 (2007)

    Article  Google Scholar 

  168. Katakabe, T., Kaneko, T., Watanabe, M., Fukushima, T., Aida, T.: Electric double-layer capacitors using “bucky gels” consisting of an ionic liquid and carbon nanotubes. J. Electrochem. Soc. 152, A1913–A1916 (2005)

    Article  Google Scholar 

  169. Kim, S.U., Lee, L.H.: Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem. Phys. Lett. 400, 253–257 (2004)

    Article  Google Scholar 

  170. Shi, L., Liu, X., Niu, W., Li, H., Han, S., Chen, J., Xu, G.: Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens. Bioelectron. 24, 1159–1163 (2009)

    Article  Google Scholar 

  171. Inagaki, M., Konno, H., Tanaike, O.: Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880–7903 (2010)

    Article  Google Scholar 

  172. Hulicova, D., Yamashita, J., Soneda, Y., Hatori, H., Kodama, M.: Supercapacitors prepared from melamine-based carbon. Chem. Mater. 17, 1241–1247 (2005)

    Article  Google Scholar 

  173. Huggins, T.M., Pietron, J.J., Wang, H., Ren, Z.J., Biffinger, J.C.: Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour. Technol. 195, 147–153 (2015)

    Article  Google Scholar 

  174. Huggins, T., Wang, H., Kearns, J., Jenkins, P., Ren, Z.J.: Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 157, 114–119 (2014)

    Article  Google Scholar 

  175. Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., Ma, S.: Highly ordered macroporous woody biochar with ultra-high carboncontent as supercapacitor electrodes. Electrochim. Acta 113, 481–489 (2013)

    Article  Google Scholar 

  176. Zhang, L., Jiang, J., Holm, N., Chen, F.: Mini-chunk biochar supercapacitors. J. Appl. Electrochem. 44, 1145–1151 (2014)

    Article  Google Scholar 

  177. Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., Martens, W., Mahmood, N., Zhang, S.: Microporous bamboo biochar for lithium–sulfur batteries. Nano Res. 8, 129–139 (2015)

    Article  Google Scholar 

  178. Chen, W.H., Ye, S.C., Sheen, M.K.: Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 118, 195–203 (2012)

    Article  Google Scholar 

  179. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., Titirici, M.M.: Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010)

    Article  Google Scholar 

  180. Dubois, S.M.M., Declerck, X., Charlier, J.C., Payne, M.C.: Spin filtering and magneto-resistive effect at the graphene/h-BN ribbon interface. ACS Nano 7, 4578–4585 (2013)

    Article  Google Scholar 

  181. Zhang, M., Gao, B., Yao, Y., Xue, Y., Inyang, M.: Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci. Total Environ. 435–436, 567–572 (2012)

    Article  Google Scholar 

  182. Inyang, M., Gao, B., Zimmerman, A., Zhang, M., Chen, H.: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem. Eng. J. 236, 39–46 (2014)

    Article  Google Scholar 

  183. Jin, H., Wang, X., Gu, Z., Polin, J.: Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources 236, 285–292 (2013)

    Article  Google Scholar 

  184. Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., Stephenson, T.J., King’ondu, C.K., Holt, C.M.B., Olsen, B.C., Tak, J.K., Harfield, D., Anyia, A.O., Mitlin, D.: Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7, 5131–5141 (2013)

    Article  Google Scholar 

  185. Inagaki, M.: Pores in carbon materials-importance of their control. New Carbon Mater. 24, 193–232 (2009)

    Article  Google Scholar 

  186. Fang, B., Wei, Y.Z., Maruyama, K., Kumagai, M.: High capacity supercapacitors based on modified activated carbon aerogel. J. Appl. Electrochem. 35, 229–233 (2005)

    Article  Google Scholar 

  187. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Article  Google Scholar 

  188. Miller, J.R.: Valuing reversible energy storage. Science 335, 1312–1313 (2012)

    Article  Google Scholar 

  189. Nakamura, M., Tahara, Y., Murakami, T., Iijima, S., Yudasaka, M.: Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon 69, 409–416 (2014)

    Article  Google Scholar 

  190. Costa, R.D., Feihl, S., Kahnt, A., Gambhir, S., Officer, D.L., Wallace, G.G., Lucio, M.I., Herrero, M.A., Vazquez, E., Syrgiannis, Z., Prato, M., Guldi, D.M.: Carbon nanohorns as integrative materials for efficient dye-sensitized solar cells. Adv. Mater. 25, 6513–6518 (2013)

    Article  Google Scholar 

  191. Azami, T., Kasuya, D., Yuge, R., Yudasaka, M., Iijima, S., Yoshitake, T., Kubo, Y.: Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112, 1330–1334 (2008)

    Article  Google Scholar 

  192. Savage, N.: Come into the light. Nature 483, S38–S39 (2012)

    Article  Google Scholar 

  193. Savage, N.: Super carbon. Nature 483, S30–S31 (2012)

    Article  Google Scholar 

  194. Chuenchom, L., Kraehnert, R., Smarsly, B.M.: Recent progress in soft-templating of porous carbon materials. Soft Matter 8, 10801–10812 (2012)

    Article  Google Scholar 

  195. Sakintuna, B., Yurum, Y.: Templated porous carbons: a review article. Ind. Eng. Chem. Res. 44, 2893–2902 (2005)

    Article  Google Scholar 

  196. Paraknowitsch, J.P., Thomas, A.: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013)

    Article  Google Scholar 

  197. Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299, 9–26 (2014)

    Article  Google Scholar 

  198. John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)

    Article  Google Scholar 

  199. Ashori, A.: Wood–plastic composites as promising green-composites for automotive industries. Bioresour. Technol. 99, 4661–4667 (2008)

    Article  Google Scholar 

  200. Das, O., Sarmah, A.K., Bhattacharyya, D.: A sustainable and resilient approach through biochar addition in wood polymer composites. Sci. Total Environ. 512–513, 326–336 (2015)

    Article  Google Scholar 

  201. Ahmetli, G., Kocaman, S., Ozaytekin, I., Bozkurt, P.: Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polym. Compos. 34, 500–509 (2013)

    Article  Google Scholar 

  202. Peterson, S.C.: Evaluating corn starch and corn stover biochar as renewable filler in carboxylated styrene–butadiene rubber composites. J. Elastom. Plast. 44, 43–54 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chair (CRC) program for funding this bioenergy research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz A. Kozinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, S., Dalai, A.K., Berruti, F. et al. Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste Biomass Valor 7, 201–235 (2016). https://doi.org/10.1007/s12649-015-9459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9459-z

Keywords

Navigation