Skip to main content
Log in

Kinetic Study of a Glucose Tolerant β-Glucosidase from Aspergillus fumigatus ABK9 Entrapped into Alginate Beads

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A β-glucosidase from Aspergillus fumigatus ABK9 was purified from a pre-optimized solid state fermentation medium. The molecular weight of the purified enzyme (62.78 kDa) was determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The purified enzyme was entrapped in 4 % alginate beads and some physico-chemical properties of free and immobilized β-glucosidase were analyzed. The immobilized enzyme displayed higher Km and Vmax values but lower Kcat/Km value in comparison to its free counterpart. The pH and temperature stability of the enzyme were enhanced after immobilization. Increased thermostability of the immobilized enzyme was evidenced by the high activation energy (48.80 kJ mol−1) for thermal denaturation, longer half-life (T1/2) (1,037 min at 50 °C), higher melting temperature (Tm) (85 °C), and temperature coefficient (Q10) values (1.0). Besides superior thermodynamic properties, increased storage stability (80 % after 30 days), glucose tolerance (Ki = 430 mM) and reusability of the immobilized enzyme (nine cycles until E1/2) confirmed its promising industrial applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das, A., Ghosh, U.: Solid state fermentation of waste cabbage by Penicillium notatum NCIM NO-923 for production and characterization of cellulases. J. Sci. Ind. Res. 68, 714–718 (2009)

    Google Scholar 

  2. Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46, 541–549 (2010)

    Article  Google Scholar 

  3. Das, A., Paul, T., Halder, S.K., Jana, A., Maity, C., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresour. Technol. 128, 290–296 (2013)

    Article  Google Scholar 

  4. Das, A., Paul, T., Jana, A., Halder, S.K., Ghosh, K., Maity, C., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Bioconversion of rice straw to sugar using multizyme complex of fungal origin and subsequent production of bioethanol by mixed fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428. Ind. Crops Prod. 46, 217–225 (2013)

    Article  Google Scholar 

  5. Liu, W.L., Weber, S.A., Cotta, M.A.: Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials. Bioenergy Res. 6, 65–74 (2013)

    Article  Google Scholar 

  6. Gusakov, A.V., Salanovich, T.N., Antonov, A.I., Ustinov, B.B., Okunev, O.N., Burlingame, R., Emalfarb, M., Baez, M., Sinitsyn, A.P.: Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97, 1028–1038 (2007)

    Article  Google Scholar 

  7. Goel, A., Sharma, R.K., Tandon, H.K.L.: A comparison of different polymeric gels for entrapment of cells of Streptococcus thermophilus containing β-galactosidase. J. Food Sci. Technol. 43, 526–531 (2006)

    Google Scholar 

  8. Pal, A., Khanum, F.: Covalent immobilization of xylanase on the surface of alginate glutaraldehyde beads decreases the ‘catalytic efficiency’ but provides ‘low temperature stabilization’ effect. J. Biochem. Techhnol. 3, 409–413 (2012)

    Google Scholar 

  9. Ertan, F., Yagar, H., Balkan, B.: Optimization of α-amylase immobilization in calcium alginate beads. Prep. Biochem. Biotechnol. 37, 195–204 (2007)

    Article  Google Scholar 

  10. Das, A., Paul, T., Halder, S.K., Maity, C., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Polish J. Microbiol. 62, 31–43 (2013)

    Google Scholar 

  11. Das, A., Jana, A., Paul, T., Halder, S.K., Ghosh, K., Maity, C., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Thermodynamics and kinetic properties of halostable endoglucanase from Aspergillus fumigatus ABK9. J. Basic Microbiol. 53, 1–10 (2013)

    Article  Google Scholar 

  12. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  13. Painbeni, E., Valles, S., Polaina, J., Flors, A.: Purification and characterization of a Bacillus polymyxa β-glucosidase expressed in Escherichia coli. J. Bacteriol. 174, 3087–3091 (1992)

    Google Scholar 

  14. Bergmeyer, H.U.: Methods of Enzymatic Analysis, 2nd edn, p. 1025. Verlag Chemie, Weinheim/Berlin (1974)

    Google Scholar 

  15. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J.: Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193, 265–272 (1951)

    Google Scholar 

  16. Das, A., Ghosh, U., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Study on thermodynamics and adsorption kinetics of purified endoglucanase (Cmcase) from Penicillium notatum NCIM No-923 produced under mixed solid-state fermentation of waste cabbage and bagasse. Braz. J. Microbiol. 43, 1103–1111 (2012)

    Article  Google Scholar 

  17. Dixon, M., Webb, E.C.: Enzyme kinetics. In: Dixon, M., Webb, E.C. (eds.) Enzymes, 3rd edn, pp. 47–206. Academic Press, New York (1979)

    Google Scholar 

  18. Griffin, H., Dintzis, F.R., Krull, L., Baker, F.L.: A microfibril generating factor from the enzyme complex of Trichoderma reesei. Biotechnol. Bioeng. 26, 269–300 (1984)

    Article  Google Scholar 

  19. Riaz, M., Perveen, R., Javed, M.R., Nadeem, H., Rashid, M.H.: Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb. Technol. 41, 558–564 (2007)

    Article  Google Scholar 

  20. Xie, Y., Gao, Y., Chen, Z.: Purification and characterization of an extracellular β-glucosidase with high transglucosylation activity and stability from Aspergillus niger no. 5.1. Appl. Biochem. Biotechnol. 119, 229–240 (2004)

    Article  Google Scholar 

  21. Liu, D., Zhang, R., Yang, X., Zhang, Z., Song, S., Miao, Y., Shen, Q.: Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb. Cell Fact. 11, 25 (2012)

    Article  Google Scholar 

  22. Braccini, I., Perez, S.: Molecular basis of Ca2+ induced gelation in alginates and pectin: the egg box model revisited. Biomacromolecules 2, 1089–1096 (2001)

    Article  Google Scholar 

  23. Won, K., Kim, S., Kim, K.J., Park, H.W., Moon, S.J.: Optimization of lipase entrapment in Ca-alginate gel beads. Proc. Biochem. 40, 2149–2154 (2005)

    Article  Google Scholar 

  24. Singh, A.K., Chhatpar, H.S.: Purification and characterization of chitinase from Paenibacillus sp. D1. Appl. Biochem. Biotechnol. 164, 77–88 (2011)

    Article  Google Scholar 

  25. Siddiqui, K.S., Rashid, M.H., Durrani, I.S., Ghauri, T.M., Rajoka, M.I.: Purification and characterization of an intracellular β-glucosidase from Cellulomonas biazotea. World J. Microbiol. Biotechnol. 13, 245–247 (1997)

    Article  Google Scholar 

  26. Kara, F., Demirel, G., Tumturk, H.: Immobilization of urease by using chitosan–alginate and poly (acrylamide-co-acrylic acid)/k-carrageenan supports. Bioprocess Biosyst. Eng. 29, 207–211 (2006)

    Article  Google Scholar 

  27. Tischer, W., Wedekind, F.: Immobilized enzymes: methods and applications. Top. Curr. Chem. 200, 95–126 (1999)

    Article  Google Scholar 

  28. Lucas, R., Robles, A., de Cienfuegos, G.A., Galvez, A.: β-Glucosidase from Chalara paradoxa CH32: purification and properties. J. Agric. Food Chem. 48, 3698–3703 (2000)

    Article  Google Scholar 

  29. Decker, C.H., Visser, J., Schreier, P.: β-Glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl. Microb. Biotechnol. 55, 157–163 (2001)

    Article  Google Scholar 

  30. Riou, C., Salmon, J.M., Vallier, M.J., Gunata, Z., Barre, P.: Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64, 3607–3614 (1998)

    Google Scholar 

  31. Pei, J., Pang, Q., Zhao, L., Fan, S., Shi, H.: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol. Biofuels 5, 31 (2012)

    Article  Google Scholar 

  32. Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R.: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463 (2007)

    Article  Google Scholar 

  33. Sheldon, R.A.: Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289–1307 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grant Commission [Sanction No: F-3/2006 (BSR)/11-114/2008 (BSR)], Govt. of India, for the financial contribution in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab Chandra Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Paul, T., Ghosh, P. et al. Kinetic Study of a Glucose Tolerant β-Glucosidase from Aspergillus fumigatus ABK9 Entrapped into Alginate Beads. Waste Biomass Valor 6, 53–61 (2015). https://doi.org/10.1007/s12649-014-9329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9329-0

Keywords

Navigation