Skip to main content
Log in

Exploratory Analysis for Characterization of Solvent-Treated Products (Meal and Extract) from Rapeseed Press-Cake: Preliminary Investigation Using Principal Component Analysis

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to gain insight into the applicability of different solvents for obtaining useful bio-based products like protein (as functional food ingredient), polyphenols (as natural antioxidant), or phytosterols (for pharmaceutical use) from rapeseed press-cake (the major residual biomass from oil industries). This biomass valorization would in-turn add to the sustainability and aggregate value to the waste management cycle. Commonly used solvents were employed for extraction and were segregated on the basis of their efficacy in removing polyphenols, tannins and residual oil from the cake, protein enrichment in the meal and also according to their chemical variability in GC–MS spectra of the solvent extracts, using principal component analysis. While still in the early stages of investigation, the obtained results reflect solvent treatment of oil-cakes as a promising strategy for biomass valorization in oilseed processing industries and other bio-refineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Thiyam, U., Kuhlmann, A., Stöckmann, H., Schwarz, K.: Prospects of rapeseed oil by-products with respect to antioxidative potential. C. R. Chimie 7, 611–616 (2004)

    Article  Google Scholar 

  2. Smets, K., Adriaensens, P., Reggers, G., Schreurs, S., Carleer, R., Yperman, J.: Flash pyrolysis of rapeseed cake: influence of temperature on the yield and the characteristics of the pyrolysis liquid. J. Anal. Appl. Pyrolysis 90, 118–125 (2011)

    Article  Google Scholar 

  3. Ramachandran, S., Singh, S.K., Larroche, C., Soccol, C.R., Pandey, A.: Oil cakes and their biotechnological applications—a review. Bioresour. Technol. 98, 2000–2009 (2007)

    Article  Google Scholar 

  4. Krygier, K., Sosulski, F., Hogge, L.: Free, esterified, and insoluble-bound phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J. Agric. Food Chem. 30, 334–336 (1982)

    Article  Google Scholar 

  5. Terpinc, P., Čeh, B., Ulrih, N.P., Abramovič, H.: Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crop. Prod. 39, 210–217 (2012)

    Article  Google Scholar 

  6. Ng, L.Y., Ang, Y.K., Khoo, H.E., Yim, H.S.: Influence of different extraction parameters on antioxidant properties of Carica papaya peel and seed. Res. J. Phytochem. 6, 61–74 (2012)

    Article  Google Scholar 

  7. Weisz, G.M., Schneider, L., Schweiggert, U., Kammerer, D.R., Carle, R.: Sustainable sunflower processing—I development of a process for the adsorptive decolorization of sunflower (Helianthus annuus L.) protein extracts. Innov. Food Sci. Emerg. 11, 733–741 (2010)

    Article  Google Scholar 

  8. Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X.: Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 106, 804–810 (2008)

    Article  Google Scholar 

  9. Saeed, M., Cheryan, M.: Sunflower protein concentrates and isolates’ low in polyphenols and phytate. J. Food Sci. 53(4), 1127–1131 (1988)

    Article  Google Scholar 

  10. Salleh, M.R.B.M., Maruyama, N., Adachi, M., Hontani, N., Saka, S., Kato, N., Ohkawa, Y., Utsumi, S.: Comparison of protein chemical and physicochemical properties of rapeseed cruciferin with those of soybean glycinin. J. Agric. Food Chem. 50, 7380–7385 (2002)

    Article  Google Scholar 

  11. Tyug, T.S., Prasad, K.N., Ismail, A.: Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chem. 123, 583–589 (2010)

    Article  Google Scholar 

  12. Gunawan, S., Darmawana, R., Nandaa, M., Setiawana, A.D., Fansuri, H.: Proximate composition of Xylocarpus moluccensis seeds and their oils. Ind. Crop. Prod. 41, 107–112 (2013)

    Article  Google Scholar 

  13. Lawlor, M.J., Maguire, M.F., Sheehy, E.J.: The nutritive value of grassmeal for pigs II. The digestible energy value and its relationship to total digestible nutrients. Irish J. Agr. Food Res. 1(3), 301–305 (1962)

    Google Scholar 

  14. Eriksson, T., Ciszuk, P., Burstedt, E.: Proportions of potatoes and fodder beets selected by dairy cows and the effects of feed choice on nitrogen metabolism. Livest. Sci. 126, 168–175 (2009)

    Article  Google Scholar 

  15. Thimmaiah, S.K.: Standard Methods of Biochemical Analysis. Kalyani Publishers, New Delhi, India (1999)

    Google Scholar 

  16. FAO/IAEA: Quantification of Tannins in Tree Foliage: A laboratory manual for the FAO/IAEA Co-ordinated Research Project on ‘Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage’. FAO/IAEA Working Document, IAEA, VIENNA (2000). http://www-naweb.iaea.org/nafa/aph/public/pubd31022manual-tannin.pdf. Accessed 12 Jan 2012

  17. Naczk, M., Pink, J., Zadernowski, R., Pink, D.: Multivariate model for the prediction of total phenolic acids in crude extracts of polyphenols from canola and rapeseed meals: a preliminary study. J. Am. Oil Chem. Soc. 79(8), 759–762 (2002)

    Article  Google Scholar 

  18. Wilson, W.K., Wang, K.-S., Kisic, A., Schroepfer Jr, G.J.: Concerning the chemical synthesis of 3β-hydroxy-5α-cholest-8(14)-en-15-one, a novel regulator of cholesterol metabolism. Chem. Phys. Lipids 48(1–2), 7–17 (1988)

    Article  Google Scholar 

  19. Wilson, W.K., Wheeler, M.E., Pinkerton, F.D., St. Pyrek, J., Schroepfer, G.J., Jr.: Inhibitors of sterol synthesis. Characterization of β,γ-unsaturated analogs of 3β-hydroxy-5α-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. J. Lipid Res. 32, 1215–1227 (1991)

  20. Das Purkayastha, M., Kalita, D., Das, V.K., Mahanta, C.L., Thakur, A.J., Chaudhuri, M.K.: Effects of l-ascorbic acid addition on micro-filtered coconut water: preliminary quality prediction study using 1H-NMR, FTIR and GC–MS. Innov. Food Sci. Emerg. 13, 184–199 (2012)

    Article  Google Scholar 

  21. Patras, A., Brunton, N.P., Downey, G., Rawson, A., Warriner, K., Gernigon, G.: Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity. J. Food Compos. Anal. 24, 250–256 (2011)

    Article  Google Scholar 

  22. Thiyam, U., Claudia, P., Jan, U., Alfred, B.: De-oiled rapeseed and a protein isolate: characterization of sinapic acid derivatives by HPLC–DAD and LC–MS. Eur. Food Res. Technol. 229(5), 825–831 (2009)

    Article  Google Scholar 

  23. Serrano, L., Alriols, M.G., Briones, R., Mondragón, I., Labidi, J.: Oxypropylation of rapeseed cake residue generated in the biodiesel production process. Ind. Eng. Chem. Res. 49, 1526–1529 (2010)

    Article  Google Scholar 

  24. Mwachireya, S.A., Beames, R.M., Higgs, D.A., Dosanjh, B.S.: Digestibility of canola protein products derived from the physical, enzymatic and chemical processing of commercial canola meal in rainbow trout Oncorhynchus mykiss (Walbaum) held in fresh water. Aquacult. Nutr. 5, 73–82 (1999)

    Article  Google Scholar 

  25. Wood, A.S., Stone, J.B.: Digestibility, nitrogen retention and caloric value of rapeseed and soybean meals when fed at two dietary levels to calves. Can. J. Anim. Sci. 50, 507–512 (1970)

    Article  Google Scholar 

  26. Aluko, R.E., McIntosh, T.: Polypeptide profile and functional properties of defatted meals and protein isolates of canola seeds. J. Sci. Food Agric. 81, 391–396 (2001)

    Article  Google Scholar 

  27. Bérot, S., Compoint, J.P., Larré, C., Malabat, C., Guéguen, J.: Large scale purification of rapeseed proteins (Brassica napus L.). J. Chromatogr. B 818, 35–42 (2005)

    Article  Google Scholar 

  28. Prapakornwiriya, N., Diosady, L.L.: Recovery of sinapic acid from a waste stream in the processing of yellow mustard protein isolate. J. Food Process Eng 31, 173–185 (2008)

    Article  Google Scholar 

  29. Schwenke, K.D., Mothes, R., Dudek, S., Görnitz, E.: Phosphorylation of the 12S globulin from rapeseed (Brassica napus L.) by phosphorous oxychloride: chemical and conformational aspects. J. Agric. Food Chem. 48, 708–715 (2000)

    Article  Google Scholar 

  30. Tan, S.H., Mailer, R.J., Blanchard, C.L., Agboola, S.O.: Extraction and residual antinutritional components in protein fractions of Sinapis alba and Brassica napus oil-free meals, in 17th Australian Research Assembly on Brassicas (ARAB). Wagga Wagga, NSW (2011). http://www.australianoilseeds.com/__data/assets/pdf_file/0013/8320/S5-P3-Tan.pdf. Accessed 15 Feb 2012

  31. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., Marc, I.: Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolysates. Process Biochem. 42, 1419–1428 (2007)

    Article  Google Scholar 

  32. Alam, M., Basha, S.M., Boyd, L.C.: Characterization of methanol-soluble and methanol-insoluble proteins from developing peanut seed. J. Agric. Food Chem. 48, 5517–5521 (2000)

    Article  Google Scholar 

  33. Gorinstein, S.: Alcohol-soluble and total proteins from Amaranth seeds and their comparison with other cereals. J. Agric. Food Chem. 39, 848–850 (1991)

    Article  Google Scholar 

  34. Shull, J.M., Watterson, J.J., Kirleis, A.W.: Proposed nomenclature for the alcohol-soluble proteins (Kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility and structure. J. Agric. Food Chem. 39, 83–87 (1991)

    Article  Google Scholar 

  35. Cai, R., Arntfield, S.D.: A rapid high-performance liquid chromatographic method for the determination of sinapine and sinapic acid in canola seed and meal. J. Am. Oil Chem. Soc. 78, 903–910 (2001)

    Article  Google Scholar 

  36. Li, J., El Rassi, Z.: High performance liquid chromatography of phenolic choline ester fragments derived by chemical and enzymatic fragmentation processes: analysis of sinapine in rapeseed. J. Agric. Food Chem. 50, 1368–1373 (2002)

    Article  Google Scholar 

  37. Amarowicz, R., Naczk, M., Shahidi, F.: Antioxidant activity of crude tannins of canola and rapeseed hulls. J. Am. Oil Chem. Soc. 77(9), 957–961 (2000)

    Article  Google Scholar 

  38. Cheok, C.Y., Chin, N.L., Yusof, Y.A., Law, C.L.: Extraction of total phenolic content from Garcinia mangostana Linn. Hull. I. Effects of solvents and UV–vis spectrophotometer absorbance method. Food Bioprocess Tech. doi:10.1007/s11947-011-0627-2, (2011)

  39. Amarowicz, R., Estrella, I., Hernández, T., Dueñas, M., Troszyńska, A., Kosińska, A., Pegg, R.B.: Antioxidant activity of a red lentil extract and its fractions. Int. J. Mol. Sci. 10, 5513–5527 (2009)

    Article  Google Scholar 

  40. Lapornik, B., Prosěk, M., Wondra, A.G.: Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71, 214–222 (2005)

    Article  Google Scholar 

  41. Rubin, L.J., Diosady, L.L., Phillips, C.R.: Solvent extraction of oil bearing seeds. US Patent 4460504 (1984)

  42. Sripad, G., Prakash, V., Narasinga Rao, M.S.: Extractability of polyphenols of sunflower seed in various solvents. J. Biosci. 4(2), 145–152 (1982)

    Article  Google Scholar 

  43. Reed, J.D.: Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 73, 1516–1528 (1995)

    Google Scholar 

  44. Renjie, L., Shidi, S., Yongjun, M.: Analysis of volatile oil composition of the peppers from different production areas. Med. Chem. Res. 19, 157–165 (2010)

    Article  Google Scholar 

  45. Saber, M., Kashmiri, M.A., Mohy-ud-din, A., Ahmad, H., Khanum, R.: Epicuticular wax of Tamarix aphylla L. J. Chem. Soc. Pak. 32(5), 662–667 (2010)

    Google Scholar 

  46. Ogunlesi, M., Okiei, W., Osibote, E.A.: Analysis of the essential oil from the leaves of Sesamum radiatum, a potential medication for male infertility factor, by gas chromatography—mass spectrometry. Afr. J. Biotechnol. 9(7), 1060–1067 (2010)

    Google Scholar 

  47. Chen, Y.-C., Cheng, M.-J., Lee, M.-J., Dixit, A.K., Ishikawa, T., Tsai, I.-L., Chen, I.-S.: Coumarinolignans from the root of formosan Antidesma pentandrum var. barbatum. Helv. Chim. Acta 87, 2805–2811 (2004)

    Article  Google Scholar 

  48. Okamoto, T., Kobayashi, T., Yoshida, S.: Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas. Curr. Med. Chem. Anticancer Agents 5, 47–51 (2005)

    Article  Google Scholar 

  49. Nath, U.K., Wilmer, J.A., Wallington, E.J., Becker, H.C., Möllers, C.: Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT+Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor. Appl. Genet. 118, 765–773 (2009)

    Article  Google Scholar 

  50. Boatright, W.L., Crum, A.D.: Nonpolar-volatile lipids from soy protein isolates and hexane-defatted flakes. J. Am. Oil Chem. Soc. 74, 461–467 (1997)

    Article  Google Scholar 

  51. Verleyen, T., Verhe, R., Garcia, L., Dewettinck, K., Huyghebaer, A., Greyt, W.D.: Gas chromatographic characterization of vegetable oil deodorization distillate. J. Chromatogr. A 921, 277–285 (2001)

    Article  Google Scholar 

  52. Wahidulla, S., D’Souza, L., Govenker, M.: Lipid constituents of the red alga Acantophora spicifera. Phytochemistry 48(7), 1203–1206 (1998)

    Article  Google Scholar 

  53. Gustafsson, I.B., Vessby, B., Ohrvall, M., Nydahl, M.: A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects. Am. J. Clin. Nutr. 59(3), 667–674 (1994)

    Google Scholar 

  54. Gulesserian, T., Widhalm, K.: Effect of a rapeseed oil substituting diet on serum lipids and lipoproteins in children and adolescents with familial hypercholesterolemia. J. Am. Coll. Nutr. 21(2), 103–108 (2002)

    Article  Google Scholar 

  55. Nydahl, M., Gustafsson, I.B., Ohrvall, M., Vessby, B.: Similar serum lipoprotein cholesterol concentrations in healthy subjects on diets enriched with rapeseed and with sunflower oil. Eur. J. Clin. Nutr. 48(2), 128–137 (1994)

    Google Scholar 

  56. Nydahl, M., Gustafsson, I.B., Ohrvall, M., Vessby, B.: Similar effects of rapeseed oil (canola oil) and olive oil in a lipid-lowering diet for patients with hyperlipoproteinemia. J. Am. Coll. Nutr. 14(6), 643–651 (1995)

    Article  Google Scholar 

  57. Seppänen-Laakso, T., Vanhanen, H., Laakso, I., Kohtamäki, H., Viikari, J.: Replacement of margarine on bread by rapeseed and olive oils: effects on plasma fatty acid composition and serum cholesterol. Ann. Nutr. Metab. 37(4), 161–174 (1993)

    Article  Google Scholar 

  58. Valsta, L.M., Jauhiainen, M., Aro, A., Katan, M.B., Mutanen, M.: Effects of a monounsaturated rapeseed oil and a polyunsaturated sunflower oil diet on lipoprotein levels in humans. Arterioscler. Thromb. 12(1), 50–57 (1992)

    Article  Google Scholar 

  59. Toivo, J., Piironen, V., Kalo, P., Varo, P.: Gas chromatographic determination of major sterols in edible oils and fats using solid-phase extraction in sample preparation. Chromatographia 48, 745–750 (1998)

    Article  Google Scholar 

  60. Ai, J.: Rapid measurement of free phytosterols in tobacco by short-column GC/MS/MS. J. Agric. Food Chem. 45, 3932–3935 (1997)

    Article  Google Scholar 

  61. Mitova, M., Taskova, R., Popov, S., Berger, R. G., Krings, U., Handjieva, N.: GC/MS analysis of some bioactive constituents from Carthamus lanatus L. Z. Naturforsch., C 58(9-10), 697–703 (2003)

    Google Scholar 

  62. Naz, S., Sherazi, S.T.H., Talpur, F.N., Talpur, M.Y., Kara, H.: Determination of unsaponifiable constituents of deodorizer distillates by GC–MS. J. Am. Oil Chem. Soc. 89, 973–977 (2012)

    Article  Google Scholar 

  63. Hansbury, E., Scallen, T.J.: The separation of sterol intermediates in cholesterol biosynthesis by high pressure liquid chromatography. J. Lipid Res. 21, 921–929 (1980)

    Google Scholar 

  64. Habeebullah, S.F.K., Nielsen, N.K., Jacobsen, C.: Antioxidant activity of potato peel extracts in a fish-rapeseed oil mixture and in oil-in-water emulsions. J. Am. Oil Chem. Soc. 87, 1319–1332 (2010)

    Article  Google Scholar 

  65. Ruan, G.-H., Li, G.-K.: The study on the chromatographic fingerprint of Fructus xanthii by microwave assisted extraction coupled with GC–MS. J. Chromatogr. B 850, 241–248 (2007)

    Article  Google Scholar 

  66. Xie, Y., Huang, Q., Yang, F., Lei, C.: Chemical variation in essential oil of Cryptomeria fortunei from various areas of China. Ind. Crop. Prod. 36, 308–312 (2012)

    Article  Google Scholar 

  67. Baiano, A., Terracone, C.: Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the South of Italy based on chemometrics. J. Agric. Food Chem. 59, 9815–9826 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

MDP would like to thank DST-INSPIRE Programme, DST (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Lata Mahanta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das Purkayastha, M., Dutta, N., Kalita, D. et al. Exploratory Analysis for Characterization of Solvent-Treated Products (Meal and Extract) from Rapeseed Press-Cake: Preliminary Investigation Using Principal Component Analysis. Waste Biomass Valor 5, 835–846 (2014). https://doi.org/10.1007/s12649-014-9293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9293-8

Keywords

Navigation