Skip to main content
Log in

Anaerobic Biodegradation of Cellulose–Xylan–Lignin Nanocomposites as Model Assemblies of Lignocellulosic Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In order to determine the parameters influencing lignocellulosic biomass biodegradability, binary and ternary model systems were constructed, consisting of cellulose nanowhiskers gel, xylan matrix derived from lignocellulosic plants and synthetic lignin. The adsorption of two xylan polymers with different arabinose/xylose ratios (Ara/Xyl) on the cellulose nanowhiskers resulted in the synthesis of nanocomposites each of different Ara/Xyl ratios and crystallinity indexes. Organized and associated cellulose–xylan–lignin nanocomposites were formed following the polymerization of guaïacyl (G) and syringyl (S) lignin monomers using a peroxidase/H2O2 system in cellulose nanowhiskers-xylan gel. The anaerobic digestion of cellulose nanowhiskers, xylans and cellulose–xylan nanocomposites indicated that the biomethane production depended strongly on the xylan Ara/Xyl ratio and on the cellulose crystallinity. However, the anaerobic digestion of cellulose–xylan–lignin nanocomposites showed that the digestion rate decreased significantly in the presence of lignin. Moreover, there was an even more considerable decrease in digestion rate in the presence of GS-type lignin compared to G-type lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ara:

Arabinose

BMP:

Biomethane potential

Carb:

Carbohydrates

CrI:

Crystallinity Index

L:

Lignin

LG:

Guiacyl lignin

LGS:

Guiacyl-syringyl lignin

Lm:

Lignin monomers

XY:

Xylan

Xyl:

Xylose

XYm:

Xylan polymer with Ara/Xyl = 0.32

XYs:

Xylan polymer with Ara/Xyl = 0.12

VFA:

Volatile fatty acids

WS:

Cellulose whiskers

WS-XY:

Whiskers-xylans assemblies

WS-XY-L:

Whiskers-xylans-lignin assemblies

WS-XY-LG:

Whiskers-xylans-lignin assemblies with guiacyl lignin

WS-XY-LGS:

Whiskers-xylans-lignin assemblies with guiacyl and syringyl lignin

References

  1. Salmen, L., Olsson, A.M.: Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J. Pulp Pap. Sci. 24, 99–103 (1998)

    Google Scholar 

  2. Ebringerová, A., Heinze, T.: Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21, 542–556 (2000)

    Google Scholar 

  3. Sarkanen, K.V.: Precursors and their polymerization. In: Sarkanen, K.V., Ludwig, G.H. (eds) Lignins-Occurrence, Formation, Structure and Reaction, pp. 95–155. Wiley Interscience, New York (1971)

  4. Vanholme, R., Morreel, K., Ralph, J., Boerjan, W.: Lignin engineering. In: Pauly, M., Keegstra, K. (eds) Current Opinion in Plant Biology Physiology and Metabolism, vol. 11, pp. 278–285. Current Biology LTD, London (2008)

  5. Lapierre, C.: Application of new methods for the investigation of lignin structure. In: Jung, H.G., et al. (eds.) Forage Cell Wall Structure and Digestibility, pp. 133–163. American Society of Agronomy, Madison (1993)

    Google Scholar 

  6. Gunaseelan, V.N.: Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26, 389–399 (2003)

    Article  Google Scholar 

  7. Murphy, J.D., Power, N.M.: An argument for using biomethane generated from grass as a biofuel in Ireland. Biomass Bioenergy 33, 504–512 (2009)

    Article  Google Scholar 

  8. Lubken, M., Gehring, T., Wichern, M.: Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl. Microbiol. Biotechnol. 85, 1643–1652 (2010)

    Article  Google Scholar 

  9. Barakat, A., Monlau, F., Steyer, J.P., Carrere, H.: Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour. Technol. 104, 90–99 (2012)

    Article  Google Scholar 

  10. Pavlostathis, S.G., Giraldogomez, E.: Kinetics of anaerobic treatment—a critical-review. Crit. Rev. Environ. Control 21, 411–490 (1991)

    Article  Google Scholar 

  11. Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.P., Carrère, H.: Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit. Rev. Environ. Sci. Technol. 43, 260–322 (2013)

    Google Scholar 

  12. Monlau, F., Sambusiti, C., Barakat, A., Trably, E., Guo, X.M., Latrille, E., Steyer, J.P., Carrère, H.: Predictive models of biohydrogen and biomethane based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46, 12217–12225 (2012)

    Google Scholar 

  13. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Article  Google Scholar 

  14. Chandler, J.A., Jewell, W.J., Gossett, J.M., Vansoest, P.J., Robertson, J.B.: Predicting Methane fermentation biodegradability. Biotechnol. Bioeng. 22, 93–107 (1980)

    Google Scholar 

  15. Triolo, J.M., Sommer, S.G., Moller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395–9402 (2011)

    Article  Google Scholar 

  16. Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53, 233–241 (2006)

    Article  Google Scholar 

  17. Benner, R., Maccubbin, A.E., Hodson, R.E.: Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol. 47, 998–1004 (1984)

    Google Scholar 

  18. Laureano-Perez, L., Teymouri, F., Alizadeh, H., Dale, B.E.: Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl. Biochem. Biotechnol. 124, 1081–1100 (2005)

    Article  Google Scholar 

  19. Chang, V.S., Holtzapple, M.T.: Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84, 5–37 (2000)

    Article  Google Scholar 

  20. Gama, F.M., Mota, M.: Enzymatic hydrolysis of cellulose. 1. Relationship between kinetics and physico-chemical parameters. Biocatal. Biotransformation 15, 221–236 (1997)

    Article  Google Scholar 

  21. Ciolacu, D., Ciolacu, F., Popa, V.I.: Supramolecular structure—a key parameter for cellulose biodegradation. Macromol. Symp. 272, 136–142 (2008)

    Article  Google Scholar 

  22. Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B., Holtzapple, M.T.: Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99, 3817–3828 (2008)

    Article  Google Scholar 

  23. Galbe, M., Zacchi, G.: Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson, L. (ed.) Biofuels, pp. 41–65. Springer, Berlin (2007)

  24. Rollin, J.A., Zhu, Z., Sathitsuksanoh, N., Zhang, Y.H.P.: Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol. Bioeng. 108, 22–30 (2010)

    Article  Google Scholar 

  25. Barakat, A., Winter, H., Rondeau-Mouro, C., Saake, B., Chabbert, B., Catala, B.: Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226, 267–281 (2007)

    Article  Google Scholar 

  26. Grabber, J.H.: How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 45, 820–831 (2005)

    Article  Google Scholar 

  27. Whitney, S.E.C., Brigham, J.E., Darke, A.H., Grand Reid, J.S., Gidley, M.J.: Structural aspects of interactions of mannan-based polysaccharides with bacterial cellulose. Carbohydr. Res. 307, 299–309 (1998)

    Article  Google Scholar 

  28. Tokoh, C., Takabe, K., Sugiyama, J., Fujita, M.: Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9, 65–74 (2002)

    Article  Google Scholar 

  29. Winter, H., Barakat, A., Cathala, B., Saake, B.: Preparation of arabinoxylan and its sorption on bacterial cellulose during cultivation. In: Fisher, K., Heinze, T. (eds) Makromolecular symposium series: hemicelluloses, pp. 85–92. Wiley-VCH, Wiesbaden, Germany (2006)

  30. Touzel, J.-P., Chabbert, B., Monties, B., Debeire, P., Cathala, B.: Synthesis and characterization of dehydrogenation polymers in gluconacetobacter xylinus cellulose and cellulose/pectin composite. J. Agric. Food Chem. 51, 981–986 (2003)

    Article  Google Scholar 

  31. Ludley, F.H., Ralph, J.: Improved preparation of coniferyl and sinapyls alcohols. J. Agric. Food Chem. 44, 2942–2943 (1996)

    Article  Google Scholar 

  32. Hafren, J., Fujino, T., Itoh, T.: Changes in cell wall architecture of differentiating tracheids of Pinus thunberghii during lignification. Plant Cell Physiol. 40, 532–541 (1999)

    Article  Google Scholar 

  33. Uhlin, K.I., Atalla, R.H., Thompson, N.S.: Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2, 129–144 (1995)

    Article  Google Scholar 

  34. Xi, Y., Yasuda, S., Wu, H., Liu, H.: Analysis of the structure of lignin-carbohydrate complexes by the specific 13C tracer method. J. Wood Sci. 46, 130–136 (2000)

    Article  Google Scholar 

  35. Parkas, J., Paulsson, M., Westermark, U., Terashima, N.: Solid state NMR analysis of b-13C-enriched lignocellulosic material during light-induced yellowing. Holzforschung 55, 276–282 (2001)

    Article  Google Scholar 

  36. Faix, O., Grunwald, C., Beinhoff, O.: Determinations of phenolic hydroxyl group content of Milled Wood Lignins from different botanical origins using selective aminolysis, FTIR, 1H-NMR and UV spectroscopy. Holzforchung. 46, 425–532 (1992)

    Article  Google Scholar 

  37. Collier, W.E., Schultz, T.P., Kalasinsky, V.F.: Infrared study of lignin—reexamination of aryl-alkyl ether C–O stretching peak assignments. Holzforschung 46, 523–528 (1992)

    Article  Google Scholar 

  38. Puls, J.: Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol. Symp. 120, 183–196 (1997)

    Article  Google Scholar 

  39. Faulds, C.B., Mandalari, G., Lo Curto, R.B., Bisignano, G., Waldron, K.W.: Influence of the arabinoxylan composition on the susceptibility of mono- and dimeric ferulic acid release by Humicola insolens feruloyl esterases. J. Sci. Food Agric. 86, 1623–1630 (2006)

    Article  Google Scholar 

  40. Grabber, J.H., Ralph, J., Hatfield, R.D.: Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J. Agric. Food Chem. 46, 2609–2614 (1998)

    Article  Google Scholar 

  41. Barakat, A., Putaux, J.-L., Saulnier, L., Chabbert, B., Cathala, B.: Characterization of arabinoxylan-dehydrogenation polymer (synthetic lignin polymer) nanoparticles. Biomacromolecules 8, 1236–1245 (2007)

    Article  Google Scholar 

  42. Tarantili, P.A., Tarantili, P.A., Koullas, D.P., Christakopoulos, P., Kekos, D.: Cross-synergism in enzymatic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model. Biomass Bioenergy 10, 213–219 (1996)

    Article  Google Scholar 

  43. Jeihanipour, A., Karimi, K., Taherzadeh, M.J.: Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol. Bioeng. 105, 469–476 (2010)

    Article  Google Scholar 

  44. Yoshida, M., Liu, Y., Uchida, S., Kawarda, K., Ukagami, Y., Ichinose, H., Kaneko, S., Fukuda, K.: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72, 805–810 (2008)

    Google Scholar 

  45. Gupta, R., Lee, Y.Y.: Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol. Bioeng. 102, 1570–1581 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr Kim Milferstedt for his help in microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Carrere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barakat, A., Gaillard, C., Steyer, JP. et al. Anaerobic Biodegradation of Cellulose–Xylan–Lignin Nanocomposites as Model Assemblies of Lignocellulosic Biomass. Waste Biomass Valor 5, 293–304 (2014). https://doi.org/10.1007/s12649-013-9245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9245-8

Keywords

Navigation