Skip to main content
Log in

The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen–Morse quantum well

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We analyze the influence of electron–donor impurity interaction as well as of a high-frequency non-resonant intense laser field on the intraband linear, third-order nonlinear, and total optical absorption coefficients in a GaAs/GaAlAs heterostructure with conduction band Rosen–Morse potential profile. For this, firstly, the binding energies associated with ground and first excited states (1s, 2s) of a hydrogenic donor center have been calculated as functions of the impurity position using the effective-mass approximation and a variational procedure. Then, the linear, third-order nonlinear, and total optical absorption coefficients were evaluated for transitions between the impurity and subband electronic states. Emphasis is made on understanding the role of structure parameters on the features of these nonlinear optical properties. The numerical results show that the impurity binding energies and lowest intersubband transitions depend strongly on the high-frequency intense laser field. The presence of impurity atom causes a blueshift in the optical spectrum and an increase in the amplitude of absorption coefficients. Additionally, it was observed that studied optical transitions are sensitive to the structure parameters and high-frequency intense laser field, thus affecting the optical absorption response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J Faist, F Capasso, D L Sivco, C Sirtori, A L Hutchinson and A Y Cho Science 264 553 (1994)

    Article  ADS  Google Scholar 

  2. R F Kazarinov and G L Belenky IEEE Electron Device Lett. 31 423 (1995)

    Article  Google Scholar 

  3. R F Kazarinov and R A Suris Sov. Phys.—Semicond. 5 707 (1971)

    Google Scholar 

  4. T Akiyama, M Sugawara and Y Arakawa Proc. IEEE 95 1757 (2007)

    Article  Google Scholar 

  5. D Ahn and S L Chuang Phys. Rev. B 35 4149 (1987)

    Article  ADS  Google Scholar 

  6. R P G Karunasiri, Y J Mii and K L Wang IEEE Electron Device Lett. 11 227 (1990)

    Article  ADS  Google Scholar 

  7. S Y Wang, Y Kawakami, J Simpson, H Stewart, K A Prior and B C Cavenett Appl. Phys. Lett. 62 1715 (1993)

    Article  ADS  Google Scholar 

  8. F Capasso, K Mohammed and A Y Cho Appl. Phys. Lett. 48 478 (1986)

    Article  ADS  Google Scholar 

  9. K-K Choi, B F Levine, C G Bethea, J Walker and R J Malik Appl. Phys. Lett. 50 1814 (1987)

    Article  ADS  Google Scholar 

  10. S Noda, T Uemura, T Yamashita and A Sasaki J. Appl. Phys. 68 6529 (2008)

    Article  ADS  Google Scholar 

  11. S M Reimann and M Manninen Rev. Mod. Phys. 74 1283 (2002)

    Article  ADS  Google Scholar 

  12. M Sahin J. Appl. Phys. 106 063710 (2009)

    Article  ADS  Google Scholar 

  13. I Karabulut and C A Duque Physica E 43 1405 (2011)

    Article  ADS  Google Scholar 

  14. J C Martinez-Orozco, M E Mora-Ramos and C A Duque J. Lumin. 132 449 (2012)

    Article  Google Scholar 

  15. G Rezaei and M J Karimi Opt. Commun. 285 5467 (2012)

    Article  ADS  Google Scholar 

  16. X Li, C Zhang, Y Tang and B Wang Physica E 56 130 (2014)

    Article  ADS  Google Scholar 

  17. M J Karimi and A Keshavarz Physica E 44 1900 (2012)

    Article  ADS  Google Scholar 

  18. R L Restrepo, J P González-Pereira, E Kasapoglu, A L Morales and C A Duque Opt. Mater. 86 590 (2018)

    Article  ADS  Google Scholar 

  19. G Liu, K Guo, Z Zhang, H Hassanbadi and L Lu Thin Solid Films 662 27 (2018)

    Article  ADS  Google Scholar 

  20. H Dakhlaoui and M Nefzi Superlattices Microstruct. 136 106292 (2019)

    Article  Google Scholar 

  21. J C Martínez-Orozco, F Ungan and K A Rodríguez-Magdaleno Phys. Scr. 95 035802 (2020)

    Article  ADS  Google Scholar 

  22. G Bastard Phys. Rev. B 24 4714 (1981)

    Article  ADS  Google Scholar 

  23. C Xia, Y Jia, Y Zhu and S Wei Physica B 406 4554 (2011)

    Article  ADS  Google Scholar 

  24. I Karabulut and S Baskoutas J. Appl. Phys. 103 073512 (2008)

    Article  ADS  Google Scholar 

  25. Z H Zhang, G Zhuang, K X Guo and J H Yuan Superlattices Microstruct. 100 440 (2016)

    Article  ADS  Google Scholar 

  26. E B Al, E Kasapoglu, S Sakiroglu, C A Duque and I Sokmen J. Mol. Struct. 1157 288 (2018)

    Article  ADS  Google Scholar 

  27. H S Brandi, A Latge and L E Oliveira Phys. Status Solidi (b) 210 671 (1998)

    Article  ADS  Google Scholar 

  28. E C Niculescu, L M Burileanu and A Radu Superlattices Microstruct. 44 173 (2008)

    Article  ADS  Google Scholar 

  29. F Ungan, U Yesilgul, S Sakiroglu, E Kasapoglu, H Sari and I Sokmen Phys. Lett. A 374 2980 (2010)

    Article  ADS  Google Scholar 

  30. E C Niculescu, A Radu and M Stafe Superlattices Microstruct. 46 443 (2009)

    Article  ADS  Google Scholar 

  31. A J Peter J. Comput. Theor. Nanosci. 6 1702 (2009)

    Article  Google Scholar 

  32. H Sari, F Ungan, S Sakiroglu, U Yesilgul and I Sokmen J. Phys. Chem. Solids 120 279 (2018)

    Article  ADS  Google Scholar 

  33. D Gul Kilic, S Sakiroglu and I Sokmen Phys. E Low Dimens. Syst. Nanostruct. 102 50 (2018)

    Article  ADS  Google Scholar 

  34. D Gul Kilic, S Sakiroglu, E Kasapoglu, H Sari and I Sokmen Photonics Nanostruct. Fundam. Appl. 38 100748 (2020)

    Article  Google Scholar 

  35. H Sari, E Kasapoglu, S Sakiroglu, I Sokmen and C A Duque Condens. Matter Phys. 100 619 (2020)

    Google Scholar 

  36. B Vaseghi, G Rezaei and T Sajadi Condens. Matter 456 171 (2015)

    ADS  Google Scholar 

  37. L Lu, W Xie and H Hassanabadi J. Lumin. 131 2538 (2011)

    Article  Google Scholar 

  38. M G Barseghyan Chem. Phys. 479 1 (2016)

    Article  Google Scholar 

  39. M G Barseghyan Eur. Phys. J. Plus 131 361 (2016)

    Article  Google Scholar 

  40. G Safarpour, M A Izadi, M Novzari and S Yazdanpanahi Superlattices Microstruct. 75 936 (2014)

    Article  ADS  Google Scholar 

  41. E Kasapoglu, S Sakiroglu, I Sokmen, R L Restrepo, M E Mora-Ramos and C A Duque Opt. Mater. 60 318 (2016)

    Article  ADS  Google Scholar 

  42. E Kasapoglu, S Sakiroglu, H Sari, I Sokmen and C A Duque Optik 181 432 (2019)

    Article  ADS  Google Scholar 

  43. R Khordad and B Mirhosseini Opt. Spectrosc. 117 434 (2014)

    Article  ADS  Google Scholar 

  44. F Ungan and M K Bahar Opt. Mater. 90 231 (2019)

    Article  ADS  Google Scholar 

  45. F Ungan, M K Bahar, S Pal and M E Mora-Ramos Commun. Theor. Phys. 72 075505 (2020)

    Article  ADS  Google Scholar 

  46. F M S Lima, M A Amato, O A C Nunes, A L A Fonseca, B G Enders and E F da Silva Jr. J. Appl. Phys. 105 123111 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MEMR is grateful to Mexican Conacyt for support through Research Grant A1-S-8218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Salman Durmuslar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman Durmuslar, A., Turkoglu, A., Mora-Ramos, M.E. et al. The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen–Morse quantum well. Indian J Phys 96, 3485–3492 (2022). https://doi.org/10.1007/s12648-021-02251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02251-6

Keywords

Navigation