Skip to main content
Log in

Performance of NaI(Tl) detector for gamma-ray spectroscopy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Radiation measurement is vital in radiation physics as its possible hazardous effect on human health should be known. Although radiation may be measured using different kinds of detector types, the NaI(Tl) crystal is one of the most commonly used detector types. This is due to its advantages such as low cost, resistance to thermal effects, and weather conditions. In the use of a gamma spectrometer system, the performance of the detector system is very important in order to determine absolute radiation values as the variation of measurement may affect health due to the radiation. In this work, the performance of 3″ × 3″ NaI(Tl) detector has been determined by obtaining some parameters such as response function, resolution, energy spectrum, the figure of merit. Those parameters have been measured using 22Na, 137Cs, and 60Co radioactive sources. The system was also modeled by using FLUKA code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

source distance to detector obtained for 511 keV gamma ray

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. I Akkurt and K Gunoglu Technol. Nuclear Install. 2014 186798 (2014)

    Google Scholar 

  2. Tsouflanidis N (New York: Mc Graw-Hill) (1983)

  3. T T Böhlen, Cerutti F, M P Chin, A Fassò, A Ferrari, P G Ortega, and V Vlachoudis Nuclear Data Sheets 120 211(2014)

  4. A Ferrari, P R Sala, A Fasso, and J Ranft CERN-2005–10 (2005), INFN/TC_05/11, SLAC-R-773 (2005)

  5. H O Tekin Sci. Technol. Nuclear Install. 6547318 7 (2016)

  6. I Akkurt, H O Tekin, Mesbahi Acta Phys. Pol. A 128(2-B) 332 (2015)

  7. C Salgado, M Brandão, L E B Schirru, R Pereira, C M D N A, and C D C Conti Progress in Nuclear 9Energy 59 19 (2012)

  8. I Mouhti, A Elanique, M Y Messous, B Belhorma, and A Benahmed J. Radiat. Res. Appl. Sci. 11 335 (2018)

  9. M Hashem, P Hamed, and V N Alireza Asian J. Exp. Sci. 21 1e12 (2007)

  10. U Shoaib Technol. 50 1006 (2018).

    Google Scholar 

  11. M Lee et al Eng. Technol. (2019). https://doi.org/10.1016/j.net.12.003

    Article  Google Scholar 

  12. A A Thabet et al Eng. Technol. (2019). https://doi.org/10.1016/j.net.11.022

    Article  Google Scholar 

  13. D S Clarke Technol. 49 1354 (2017).

    Google Scholar 

  14. P Kumar et al Eng. Technol. (2020). https://doi.org/10.1016/j.net.2020.03.014

    Article  Google Scholar 

  15. A Revink and R Khairi Technol. 50 462 (2018).

    Google Scholar 

  16. J Kim et al Eng. Technol. 51 1091 (2019).

    Google Scholar 

  17. H F Kayiran Emerg. Mater. Res. https://doi.org/10.1680/jemmr.21.00052

  18. F Kulali Emerg. Mater. Res. 9–4 1341. (2020)

  19. Y Y Çelen J. Mater. Sci: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06376-6

    Article  Google Scholar 

  20. R B Malidarrea Emerg. Mater. Res. 9–4 1334. (2020)

  21. I Akkurt and H.O. Tekin Emerg. Mater. Res. 9–3 1020 (2020)

    Article  Google Scholar 

  22. Y S Rammah et al Emerg. Mater. Res 9–3 1000 (2020)

    Article  Google Scholar 

  23. R B Malidarre and I Akkurt Rad. Phys. Chem. 186 109540 (2021)

    Article  Google Scholar 

  24. H O Tekin et al Emerg. Mater. Res. 9–4 1131 (2020)

    Article  Google Scholar 

  25. Y Y Çelen and A. Evcin Emerg. Mater. Res. 9–3 770 (2020)

    Article  Google Scholar 

  26. R. Boodaghi Malidarre, and I Akkurt J. Mater. Sci. Mater. Electron 32 11666 (2021)

  27. Y Y Çelen Emerg. Mater. Res. 10–3, 307(2021)

  28. I Akkurt and R B Malidarre Phys. J. Plus 136 264 (2021)

    Article  Google Scholar 

  29. F I El-Agawany, K A Mahmoud, H Akyildirim, E-S Yousef, H O Tekin and Y S Rammah Emerg. Mater. Res. 10–2 227 (2021)

    Article  Google Scholar 

  30. D Ş Baykal, H Tekin, and Ç R Mutlu Int. J. Comput. Exp. Sci. Eng. 7-2 99–108 (2021)

  31. H O Tekin, B Cavli, E E Altunsoy, T Manici and C Ozturk Int. J. Comput. Exp. Sci. Eng. 4–2 37 (2018)

    Article  Google Scholar 

  32. İ Akkurt and N A Uyanik Int. J. Comput. Exp. Sci. Eng. 1–1 1 (2015)

    Article  Google Scholar 

  33. F Waheed, K Günoğlu, H Akyıldırım, and İ Akkurt Proceedings of ICCESEN-2018, 12–16 October 2018, Kemer-Antalya-TURKEY. http://2018.iccesen.org/ (2018).

  34. Berger, and Seltzer Nucl. Instrum. Methods 104–2 317–332 (1972).

  35. H Garo Balian, and N W Eddy Nucl. Instrum. Methods 145 389 (1977)

  36. F Waheed, H Akyildirim, K Günoğlu, and İ Akkurt Proceedings of ICSuSaT-2019, 05–07 July 2019, İstanbul-TURKEY, https://icsusat.net/icsusat (2019)

  37. R A Winyard, J E Lutkin, and G W McBeth Nucl. Instrum. Methods 95 141 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İskender Akkurt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkurt, İ., Waheed, F., Akyildirim, H. et al. Performance of NaI(Tl) detector for gamma-ray spectroscopy. Indian J Phys 96, 2941–2947 (2022). https://doi.org/10.1007/s12648-021-02210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02210-1

Keywords

Navigation