Skip to main content
Log in

Infinite element boundary conditions for dynamic models under seismic loading

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper presents the use of infinite element boundary conditions for physical and engineering problems in a three-dimensional unbounded domain, subjected to seismic loading, with a view to compare results with the traditional viscous boundary. Boundary conditions are discussed in general with an emphasis on understanding the pros and cons of each method used. Also, a comparison is drawn between the different types of boundary conditions used for the optimal solution of physical problems especially the models under seismic loading. Infinite elements can be implemented easily with lesser computational time. It provides “quite” boundaries to the models and can be used effectively for the accurate numerical solutions of physical issues. This paper presents the complete details of node setting and numerical computation for the infinite element boundaries and compares results of a three-dimensional free field soil model and a soil–tunnel model under seismic loading using infinite boundary, and a similar model using a spring/dashpot system. The results verified the use infinite element boundary to evaluate the seismic behaviour of the model and suggest that in the time domain, this method can be combined easily with the finite element and other methods such as boundary element method directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J S Gui et al. Appl. Mech. Mater.353356 (2013)

  2. H Y Zhang et al Sci. Technol. Min. Metall.23 685 (2016)

    Google Scholar 

  3. C R Dowding Int. J. Rock Mech. Min. Sci. Geomech. Abstr.15 83 (1978)

    Article  Google Scholar 

  4. P Pineda et al Adv. Mater. Res.133 (2010)

  5. C K Seal et al Int. J. Mod. Phys. B24 2478 (2010)

    Article  ADS  Google Scholar 

  6. S L Kramer Geotechnical Earthquake Engineering (New Jersey: Prentice Hall) (1996)

  7. Ž Nikolić et al Earthq. Eng. Struct. Dyn.46 159 (2017)

    Article  Google Scholar 

  8. L Jing and J A Hudson Int. J. Rock Mech. Min. Sci.39 409 (2002)

    Article  Google Scholar 

  9. Z H Wang et al Appl. Mech. Mater.166 636–640 (2012)

    Article  ADS  Google Scholar 

  10. P Li, EX Song Int. J. Numer. Anal. Methods Geomech.40 344 (2016)

    Article  Google Scholar 

  11. J P Wolf Earthq. Eng. Struct. Dyn.26 931 (1997)

    Article  Google Scholar 

  12. P Li and E X Song Soil Dyn. Earthq. Eng.48 48 (2013)

    Article  Google Scholar 

  13. M Saleh Asheghabadi and M A Rahgozar Iran. J. Sci. Technol. Trans. Civ. Eng. 1–15 (2018). https://doi.org/10.1007/s40996-018-0214-0

  14. B Engquist and A Majda Math. Comput.31 629 (1977)

    Article  ADS  Google Scholar 

  15. Lysmer and R L Kuhlemeyer J. Eng. Mech. Div. ASCE95 859 (1969)

    Google Scholar 

  16. M Saleh Asheghabadi and H Matinmanesh Proc. Eng.14 3162 (2011)

    Article  Google Scholar 

  17. H Matin Manesh and M Saleh Asheghabadi The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction (2011)

  18. L Zdravkovic and S Kontoe The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) (2008)

  19. L Kellezi Soil Dyn. Earthq. Eng.19 533547 (2000)

    Article  Google Scholar 

  20. Kontoe S PhD thesis (Imperial College, University of London) (2006)

  21. J Bielak, K Loukakis, H Yoshiaki and C Yoshimura Bull. Seismol. Soc. Am.93 817 (2003)

    Article  Google Scholar 

  22. L-Y Fu and R-S Wu Geophysics65 596 (2000)

    Article  ADS  Google Scholar 

  23. L-Y Fu and Y G Mu Acta Geophys. Sin.37 521 (1994)

  24. L-Y Fu 66th Ann. Internat. Mtg. Soc. Expl. GeophysI 1239 (1996). https://doi.org/10.1190/1.1826323

    Article  Google Scholar 

  25. L-Y Fu, Y G Mu and H J Yang Geophysics62 650 (1997)

    Article  ADS  Google Scholar 

  26. J Wang 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing (2005)

  27. D Givoli, J B Keller Comput. Methods Appl. Mech. Eng.76 41 (1989)

    Article  ADS  Google Scholar 

  28. P Bettess Int. J. Numer. Method Eng.11 54–64 (1978)

    Google Scholar 

  29. O C Zienkiewicz, K Bando, P Bettess, C Emson, T C Chiam Int. J. Numer. Method Eng.21 1229 (1985)

    Article  Google Scholar 

  30. I Kaljevis, S Saigal, A Ashraf Int. J. Numer. Method Eng.35 2079 (1992)

    Article  Google Scholar 

  31. H N Andreas Eng. Comput. Mech.167 3–12 (2013)

    Google Scholar 

  32. Y Kagawa, T Yamabuchi and S Kitagami Boundary Element Methods in Engineering (Berlin: Springer) 1017 (1983)

    MATH  Google Scholar 

  33. I Kaljević I et al Int. J. Numer. Method Eng.35 2079 (1992)

  34. ABAQUS User Manual, Viewed on 15 Jan 2019. http://abaqus.software.polimi.it/v6.13/books/usb/default.htm?startat=pt06ch28s03alm03.html

  35. G Goch and M Reigl J. Appl. Phys.79 9084 (1996)

    Article  ADS  Google Scholar 

  36. M Saleh Asheghabadi, M Sahafnia, A Bahadori, N Bakhshayeshi Int. J. Environ. Sci. Technol.16(7) 2961–2972 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohsen Saleh Asheghabadi coordinated and supervised the progress of the research. He performed the numerical analysis using ABAQUS and presented the results and analysis. Zulfiqar Ali worked on the literature review and infinite element boundary formulations and prepared the manuscript.

Corresponding author

Correspondence to Mohsen Saleh Asheghabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh Asheghabadi, M., Ali, Z. Infinite element boundary conditions for dynamic models under seismic loading. Indian J Phys 94, 907–917 (2020). https://doi.org/10.1007/s12648-019-01533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01533-4

Keywords

PACS Nos.

Navigation