Skip to main content
Log in

Kaluza–Klein cosmological model in f(RT) gravity with Λ(T)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A class of Kaluza–Klein cosmological models in f(RT) theory of gravity have been investigated. In the work, we have considered the functional f(RT) to be in the form \(f(R,T)=f(R)+f(T)\) with \(f(R)=\lambda R\) and \(f(T)=\lambda T\). Such a choice of the functional f(RT) leads to an evolving effective cosmological constant \(\Lambda \) which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads to two different aspects of the volumetric expansion, namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair, we have found that the model with exponential volumetric expansion behaves more like a lambda cold dark matter model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A G Riess et al. Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  2. A G Riess et al. (Supernova Search Team) Astron. J. 607 665 (2004)

    Article  Google Scholar 

  3. C L Bennet et al. Astrophys. J. Suppl. Ser. 148 1 (2003)

    Article  ADS  Google Scholar 

  4. D N Spergel et al. Astrophys. J. Suppl. Ser. 148 175 (2003)

    Article  ADS  Google Scholar 

  5. D N Spergel et al. (WMAP) Astrophys. J. Suppl. Ser. 170 3771 (2007)

    Article  Google Scholar 

  6. D J Einstein et al. (SDSS Collaboration) Astrophys. J. 633 560 (2005)

    Article  ADS  Google Scholar 

  7. M Tegmark et al. Astrophys. J. 606 702 (2004)

    Article  ADS  Google Scholar 

  8. B Jain and A Tylor: Phys. Rev. Lett. 91 141392 (2003)

    ADS  Google Scholar 

  9. S M Carroll, V Duvvuri, M Troddenn and M S Turner Phys. Rev. D 70 043528 (2004)

    Article  ADS  Google Scholar 

  10. T P Sotiriou and V Faraoni Rev. Mod. Phys. 82 451 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  11. S Nojiri and S D Odintsov Int. J. Geom. Methods Mod. Phys. 4 115 (2007)

    Article  MathSciNet  Google Scholar 

  12. O Bertolami, C G Bohmer, T Harko and F S N Lobo Phys. Rev. D 75 104016 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. T Multamaki and I Vilja Phys. Rev. D 74 064022 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. T Multamaki and I Vilja Phys. Rev. D 76 064021 (2007)

    Article  ADS  Google Scholar 

  15. S Nojiri and S D Odintsov Phys. Rep. 505 59 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  16. T Clifton, P G Ferreira, A Padilla and C Skordis Phys. Rep. 513 1 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  17. M F Shamir Astrophys. Space Sci. 330 183 (2010)

    Article  ADS  Google Scholar 

  18. T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    Article  ADS  Google Scholar 

  19. K S Adhav Astrophys. Space Sci. 339 365 (2012)

    Article  ADS  Google Scholar 

  20. D R K Reddy, R Santikumar and R L Naidu Astrophys. Space Sci. 342 249 (2012)

    Article  ADS  Google Scholar 

  21. D R K Reddy, R Santikumar and T V Pradeep Kumar Int. J. Theor. Phys. 52 239 (2013)

    Article  Google Scholar 

  22. D R K Reddy and R Santikumar Astrophys. Space Sci. 344 253 (2013)

    Article  ADS  Google Scholar 

  23. R Chaubey and A K Shukla Astrophys. Space Sci. 343 415 (2013)

    Article  ADS  Google Scholar 

  24. V U M Rao and D Neelima Eur. Phys. J. Plus 128 35 (2013)

    Article  Google Scholar 

  25. P K Sahoo, B Mishra and G Chakradhar Reddy Eur. Phys. J. Plus. 129 49 (2014)

    Article  Google Scholar 

  26. B Mishra and P K Sahoo Astrophys. Space Sci. 352 331 (2014)

    Article  ADS  Google Scholar 

  27. A K Yadav. arXiv:1311.5885v1 (2013)

  28. N Ahmed and A Pradhan Int. J. Theor. Phys. 53 289 (2014)

    Article  MathSciNet  Google Scholar 

  29. M Sharif and M Zubair J. Cosmol. Astropart. Phys. 03 028 (2012)

    Article  ADS  Google Scholar 

  30. F G Alvarenga, M J S Houndjo, A V Monwanou and J B C Orou J. Mod. Phys. 4 130 (2013)

    Article  Google Scholar 

  31. R Myrzakulov Entropy 14(9) 1627 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  32. R Myrzakulov Eur. Phys. J. C 72 2203 (2012)

    Article  ADS  Google Scholar 

  33. P H R S Moraes. arxiv:1502.02593[gr-qc] (2015)

  34. P H R S Moraes Astrophys. Space Sci. 352 273 (2014)

    Article  ADS  Google Scholar 

  35. S Ram and R Priyanka Astrophys. Space Sci. 347 389 (2013)

    Article  ADS  Google Scholar 

  36. O Bertolami, F S N Lobo and J Paramos Phys. Rev. D 78 064036 (2008)

    Article  ADS  Google Scholar 

  37. V Faraoni Phys. Rev. D 80 124040 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. H Farajollahi, A Ravanpak and G F Fadakar Phys. Lett. B 711 225 (2012)

    Article  ADS  Google Scholar 

  39. O Minazzoli and T Harko. arxiv:1209.2754 (2012)

  40. N J Poplawski. arXiv:gr-qc/0608031 (2006)

  41. Y F Cai, S H Chen, J B Dent, S Dutta and E N Saridakis arxiv:1104.4349 (2011)

  42. A Pradhan and H Amirhashchi Mod. Phys. Lett. A 26 2261 (2011)

    Article  ADS  Google Scholar 

  43. A Pradhan, A K Pandey and R K Mishra Indian J. Phys. 88 757 (2014)

    Article  ADS  Google Scholar 

  44. O Akarsu, S Kumar, R Myrzakulov, M Sami and L Xu. arxiv:1307.4911 (2014)

  45. S Kumar MNRAS 422 2532 (2012)

    Article  ADS  Google Scholar 

  46. O Akarsu and C B Kilinc Gen. Relativ. Gravit. 42 763 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  47. S K Tripathy Astrophys. Space Sci. 350 367 (2014)

    Article  ADS  Google Scholar 

  48. P K Sahoo and M Sivakumar Astrophys. Sapce Sci. 357 60 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

PKS would like to thank the Institute of Mathematical Sciences (IMSc), Chennai, India, for providing facility and support during a visit where part of this work was done. SKT likes to thank Institute of Physics, Bhubaneswar, for providing necessary facility for accomplishing a part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.K., Mishra, B. & Tripathy, S.K. Kaluza–Klein cosmological model in f(RT) gravity with Λ(T). Indian J Phys 90, 485–493 (2016). https://doi.org/10.1007/s12648-015-0759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0759-8

Keywords

PACS No.

Navigation