Skip to main content

Advertisement

Log in

Quantum thermodynamics at critical points during melting and solidification processes

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We systematically explore and show the existence of finite-temperature continuous quantum phase transition ( C T QPT) at a critical point, namely, during solidification or melting such that the first-order thermal phase transition is a special case within C T QPT. In fact, C T QPT is related to chemical reaction where quantum fluctuation (due to wavefunction transformation) is caused by thermal energy and it can occur maximally for temperatures much higher than 0 K. To extract the quantity related to C T QPT, we use the ionization energy theory and the energy-level spacing renormalization group method to derive the energy-level spacing entropy, renormalized Bose–Einstein distribution and the time-dependent specific heat capacity. This work unambiguously shows that the quantum phase transition applies for any finite temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Sachdev Quantum Phase Transitions (New York: Cambridge University Press) Chap. 1, p 3 (1999)

    Google Scholar 

  2. T Vojta Ann. der Phys. 509 403 (2000)

    Article  ADS  Google Scholar 

  3. M Vojta Phil. Mag. 86 1807 (2006)

    Article  ADS  Google Scholar 

  4. M Lavagna Phil. Mag. B 81 1469 (2001)

    Article  ADS  Google Scholar 

  5. A D Arulsamy Prog. Theor. Phys. 126 577 (2011)

    Article  MATH  ADS  Google Scholar 

  6. F Isik, M A Sabaner, A T Akan and A Bayri Indian J. Phys. 87 241 (2013)

    Article  ADS  Google Scholar 

  7. A D Arulsamy Pramana J. Phys. 74 615 (2010)

    Article  ADS  Google Scholar 

  8. A D Arulsamy Ann. Phys. 326 541 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. A D Arulsamy J. Chem. Sci. 125 1223 (2013)

    Google Scholar 

  10. G N Ramachandran, V Sasisekharan and C Ramakrishnan J. Mol. Biol. 7 95 (1963)

    Article  Google Scholar 

  11. G N Ramachandran and V Sasisekharan Adv. Prot. Chem. 23 283 (1968)

    Article  Google Scholar 

  12. C Ramakrishnan and G N Ramachandran Biophys. J. 5 909 (1965)

    Article  ADS  Google Scholar 

  13. R Shankar Physica A 177 530 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  14. R Shankar Rev. Mod. Phys. 66 129 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. R Shankar Phil. Trans. R. Soc. A 369 2612 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. C S Snow, J F Karpus, S L Cooper, T E Kidd and T C Chiang Phys. Rev. Lett. 91 136402 (2003)

    Article  ADS  Google Scholar 

  17. C V Raman Indian J. Phys. 2 395 (1928)

    Google Scholar 

  18. C V Raman Indian J. Phys. 2 387 (1928)

    Google Scholar 

  19. C V Raman and K S Krishnan Nature 121 501 (1928)

    Article  ADS  Google Scholar 

  20. C V Raman and K S Krishnan Indian J. Phys. 2 399 (1928)

    Google Scholar 

  21. M J Winter www.webelements.com (2011)

  22. A D Arulsamy, K Eleršič, M Modic, U Cvelbar and M Mozetič Chem. Phys. Chem. 11 3704 (2010)

    Article  Google Scholar 

  23. A D Arulsamy, Z Kregar, K Eleršič, M Modic and U S Subramani Phys. Chem. Chem. Phys. 13 15175 (2011)

    Article  Google Scholar 

  24. A D Arulsamy and K Ostrikov J. Supercond. Nov. Magn. 22 785 (2009)

    Article  Google Scholar 

  25. A D Arulsamy Phys. Lett. A 334 413 (2005)

    Article  MATH  ADS  Google Scholar 

  26. S C Gairola Indian J. Phys. 86 967 (2012)

    Article  ADS  Google Scholar 

  27. L Cemič Thermodynamics in Mineral Sciences (Berlin: Springer) Chap. 6, p 231 (2005)

    Google Scholar 

  28. R P Müller and W A Goddard Valence Bond Theory (New York: Academic Press) Reprinted from the Encyclopedia of Physical Science and Technology (2002)

  29. V Tchijov J. Phys. Chem. Solids 65 851 (2004)

    Article  ADS  Google Scholar 

  30. S V Lishchuk, N P Malomuzh and P V Makhlaichuk Phys. Lett. A 375 2656 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank Madam Sebastiammal Savarimuthu, Mr. Arulsamy Innasimuthu, Madam Amelia Das Anthony, Mr. Malcolm Anandraj and Mr. Kingston Kisshenraj for their financial support and kind hospitality between August 2011 and August 2013. I also thank Dr. Naresh Kumar Mani for his kind hospitality during my short stay in Cachan, France (March/April 2011) where part of this work has been completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Arulsamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arulsamy, A.D. Quantum thermodynamics at critical points during melting and solidification processes. Indian J Phys 88, 609–620 (2014). https://doi.org/10.1007/s12648-014-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0450-5

Keywords

PACS Nos.

Navigation