Skip to main content
Log in

COA-Cl Evokes Protective Responses Against H2O2-and 6-OHDA-Induced Toxic Injury in PC12 Cells

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

COA-Cl, a novel adenosine-like nucleic acid analog, has recently been shown to exert neuroprotective effects and to increase dopamine levels both in vivo and in vitro. Therefore, we hypothesized that COA-Cl could protect dopaminergic neurons against toxic insults. Thus, the present study aimed to investigate the protective effects of COA-Cl against hydrogen peroxide (H2O2)- and 6-hydroxydopamine (6-OHDA)-induced toxicity in PC12 cells and to elucidate the possible mechanisms. PC12 cells were incubated with COA-Cl (100 μM) with or without H2O2 or 6-OHDA (200 μM) for 24 h. Treatment with COA-Cl attenuated the decrease in cell viability, SOD activity and the Bcl-2/Bax ratio caused by H2O2. In addition, COA-Cl attenuated the increase in LDH release, ROS production, caspase-3 activity, and apoptosis induced by H2O2. Further, COA-Cl enhanced the protection of PC12 cells against the toxicity caused by 6-OHDA, as evidenced by an increase in cell viability and the Bcl-2/Bax ratio, and a decrease in LDH release. Our results are the first to demonstrate that COA-Cl potentially protects PC12 cells against toxicity induced by H2O2 and 6-OHDA, implying that COA-Cl could be a promising neuroprotective agent for the treatment of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    CAS  Google Scholar 

  • Bernstein AI, Garrison SP, Zambetti GP, O’Malley KL (2011) 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Mol Neurodegener 6:2

    Article  CAS  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    Article  CAS  Google Scholar 

  • Cheng WY, Tong H, Miller EW, Chang CJ, Remington J, Zucker RM, Bromberg PA, Samet JM, Hofer TP (2010) An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells. Environ Health Perspect 118:902–908

    Article  CAS  Google Scholar 

  • Cho ES, Lee KW, Lee HJ (2008) Cocoa procyanidins protect PC12 cells from hydrogen-peroxide-induced apoptosis by inhibiting activation of p38 MAPK and JNK. Mutat Res 640(1–2):123–130

    Article  CAS  Google Scholar 

  • Choudhary GS, Al-Harbi S, Almasan A (2015) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 1219:1–9

    Article  CAS  Google Scholar 

  • Cui K, Luo X, Xu K, Ven Murthy MR (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28:771–799

    Article  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491

    Article  CAS  Google Scholar 

  • Ding X, Wang D, Li L, Ma H (2016) Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. Int J Biochem Cell Biol 70:126–139

    Article  CAS  Google Scholar 

  • D’orsi B, Mateyka J, Prehn JHM (2017) Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 109:162–170

    Article  Google Scholar 

  • Duan X-HN, Wang W-L, Dai R, Yan H-W, Han C-N, Liu L-S (2015) Current situation of PC12 cell use in neuronal injury study. Int J Biotechnol Wellness Ind 4:61–66

    Article  Google Scholar 

  • Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W, Schmitz ML (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene 18:747–757

    Article  CAS  Google Scholar 

  • Franco-Iborra S, Vila M, Perier C (2018) Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 12:342

    Article  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  CAS  Google Scholar 

  • Hadipour E, Tayarani-Najaran Z, Fereidoni M (2020) Vitamin K2 protects PC12 cells against Aβ (1–42) and H2O2-induced apoptosis via p38 MAP kinase pathway. Nutr Neurosci 23:343–352

    Article  CAS  Google Scholar 

  • Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382

    Article  CAS  Google Scholar 

  • Heusinkveld HJ, Westerink RHS (2017) Comparison of different in vitro cell models for the assessment of pesticide-induced dopaminergic neurotoxicity. Toxicol In Vitro 45:81–88

    Article  CAS  Google Scholar 

  • Huang WC, Chen PC, Jou SB, Cheng JT (2001) Protein kinase C and changes in manganese superoxide dismutase gene expression in cultured glial cells. Clin Exp Pharmacol Physiol 28:822–825

    Article  CAS  Google Scholar 

  • Jamal M, Tsukamoto I, Takata M, Ito A, Tanaka N, Miki T, Takakura A, Ameno K, Kubota Y, Konishi R, Kinoshita H (2019) COA-Cl induces dopamine release and tyrosine hydroxylase phosphorylation: In vivo reverse microdialysis and in vitro analysis. Brain Res 1706:68–74

    Article  CAS  Google Scholar 

  • Jiang B, Liu JH, Bao YM, An LJ (2003) Hydrogen peroxide-induced apoptosis in pc12 cells and the protective effect of puerarin. Cell Biol Int 27:1025–1031

    Article  CAS  Google Scholar 

  • Juknat AA, Mendez Mdel V, Quaglino A, Fameli CI, Mena M, Kotler ML (2005) Melatonin prevents hydrogen peroxide-induced Bax expression in cultured rat astrocytes. J Pineal Res 38:84–92

    Article  CAS  Google Scholar 

  • Kiningham KK, Oberley TD, Lin SM, Mattingly CA, St Clair DK (1999) Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly (ADP-ribose) polymerase-mediated cell death. FASEB J 13:1601–1610

    Article  CAS  Google Scholar 

  • Kishimoto Y, Tsukamoto I, Nishigawa A, Nishimoto A, Kirino Y, Kato Y, Konishi R, Maruyama T, Sakakibara N (2018) Data on COA-Cl administration to the APP/PS2 double-transgenic mouse model of Alzheimers disease: improved hippocampus-dependent learning and unchanged spontaneous physical activity. Data Brief 20:1877–1883

    Article  Google Scholar 

  • Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A (2011) Dopaminergic neurotoxicant 6-OHDAinduces oxidative damage through proteolytic activation of PKCδ cell culture and animal models of Parkinson’s disease. Toxicol Appl Pharmacol 256:314–323

    Article  CAS  Google Scholar 

  • Lee YM, He W, Liou YC (2021) The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 12:58

    Article  CAS  Google Scholar 

  • Lindenboim L, Yuan J, Stein R (2000) Bcl-xS and Bax induce different apoptotic pathways in PC12 cells. Oncogene 19:1783–1793

    Article  CAS  Google Scholar 

  • Lopez MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME (2007) Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta 1770:1308–1316

    Article  Google Scholar 

  • Lu F, Nakamura T, Okabe N, Himi N, Nakamura-Maruyama E, Shiromoto T, Narita K, Tsukamoto I, Xi G, Keep RF, Miyamoto O (2016) COA-Cl, a novel synthesized nucleoside analog, exerts neuroprotective effects in the acute phase of intracerebral hemorrhage. J Stroke Cerebrovasc Dis 25:2637–2643

    Article  Google Scholar 

  • Matsura M, Kai Y, Fujii H, Ito K (1999) Yamada, Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation. Free Radic Res 30:73–83

    Article  CAS  Google Scholar 

  • McKeague AL, Wilson DJ, Nelson J (2003) Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines. Br J Cancer 88:125–131

    Article  CAS  Google Scholar 

  • Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90:675–691

    Article  CAS  Google Scholar 

  • Minjie X, Wei W, Zhou Z, Yongfei Y (2005) Capillary electrophoresis analysis of hydrogen peroxide induced apoptosis in PC12 cells. J Pharm Biomed Anal 39:853–860

    Article  Google Scholar 

  • Nesi G, Sestito S, Digiacomo M, Rapposelli S (2017) Oxidative stress, mitochondrial abnormalities and proteins deposition: multitarget approaches in Alzheimer’s Disease. Curr Top Med Chem 17:3062–3079

    Google Scholar 

  • Nishikido T, Oyama JI, Shiraki A, Tsukamoto I, Igarashi J, Node K (2019) COA-Cl (2-Cl-C.OXT-A) can promote coronary collateral development following acute myocardial infarction in mice. Sci Rep 9:2533

    Article  Google Scholar 

  • Okabe N, Nakamura E, Himi N, Narita K, Tsukamoto I, Maruyama T, Sakakibara N, Nakamura T, Itano T, Miyamoto O (2013) Delayed administration of the nucleic acid analog 2Cl-C.OXT-A attenuates brain damage and enhances functional recovery after ischemic stroke. Brain Res 1506:115–131

    Article  CAS  Google Scholar 

  • Oraki Kohshour M, Najafi L, Heidari M, Ghaffari Sharaf M (2013) Antiproliferative effect of H2O2 against human acute myelogenous leukemia KG1 cell line. J Acupunct Meridian Stud 6:134–141

    Article  Google Scholar 

  • Pantic I, Cumic J, Skodric SR, Dugalic S, Brodski C (2021) Oxidopamine and oxidative stress: Recent advances in experimental physiology and pharmacology. Chem Biol Interact 336:109380

    Article  CAS  Google Scholar 

  • Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013:956792

    Article  Google Scholar 

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  Google Scholar 

  • Ramazani E, Tayarani-Najaran Z, Fereidoni M (2019) Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran J Basic Med Sci 22(5):477–484

    Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    Article  CAS  Google Scholar 

  • Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

    Article  CAS  Google Scholar 

  • Sakakibara N, Igarashi J, Takata M, Demizu Y, Misawa T, Kurihara M, Konishi R, Kato Y, Maruyama T, Tsukamoto I (2015) Synthesis and evaluation of novel carbocyclic oxetanocin A (COA-Cl) derivatives as potential tube formation agents. Chem Pharm Bull (Tokyo) 63:701–709

    Article  CAS  Google Scholar 

  • Sakamoto I, Himi N, Hayashi N, Okabe N, Nakamura-Maruyama E, Tsukamoto I, Hasegawa T, Miyamoto O (2021) The protective effect and mechanism of COA-Cl in acute phase after spinal cord injury. Neurosci Res 170:114–121

    Article  CAS  Google Scholar 

  • Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H (1996) Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. J Biochem 120:540–546

    Article  CAS  Google Scholar 

  • Shin JH, Kim SW, Lim CM, Jeong JY, Piao CS, Lee JK (2009) alphaB-crystallin suppresses oxidative stress-induced astrocyte apoptosis by inhibiting caspase-3 activation. Neurosci Res 64:355–361

    Article  CAS  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  CAS  Google Scholar 

  • Sokolova T, Gutterer JM, Hirrlinger J, Hamprecht B, Dringen R (2001) Catalase in astroglia-rich primary cultures from rat brain: immunocytochemical localization and inactivation during the disposal of hydrogen peroxide. Neurosci Lett 297:129–132

    Article  CAS  Google Scholar 

  • Sundqvist M, Christenson K, Bjornsdottir H, Osla V, Karlsson A, Dahlgren C, Speert DP, Fasth A, Brown KL, Bylund J (2017) Elevated mitochondrial reactive oxygen species and cellular redox imbalance in human NADPH-oxidase-deficient phagocytes. Front Immunol 8:1828

    Article  Google Scholar 

  • Takata MK, Yamaguchi F, Nakanose K, Watanabe Y, Hatano N, Tsukamoto I, Nagata M, Izumori K, Tokuda M (2005) Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells. J Biosci Bioeng 100:511–516

    Article  CAS  Google Scholar 

  • Trist BG, Hare DJ, Double KL (2019) Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 18:e13031

    Article  CAS  Google Scholar 

  • Tsao CW, Cheng JT, Shen CL, Lin YS (1996) 6-Hydroxydopamine induces thymocyte apoptosis in mice. J Neuroimmunol 65:91–95

    Article  CAS  Google Scholar 

  • Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707

    Article  CAS  Google Scholar 

  • Tsukamoto I, Sakakibara N, Maruyama T, Igarashi J, Kosaka H, Kubota Y, Tokuda M, Ashino H, Hattori K, Tanaka S, Kawata M, Konishi R (2010) A novel nucleic acid analogue shows strong angiogenic activity. Biochem Biophys Res Commun 399:699–704

    Article  CAS  Google Scholar 

  • Wu Y, Wang D, Wang X, Wang Y, Ren F, Chang D, Chang Z, Jia B (2011) Caspase 3 is activated through caspase 8 instead of caspase 9 during H2O2-induced apoptosis in HeLa cells. Cell Physiol Biochem 27:539–546

    Article  CAS  Google Scholar 

  • Yang J, Yang J, Liang SH, Xu Y, Moore A, Ran C (2016) Imaging hydrogen peroxide in Alzheimer’s disease via cascade signal amplification. Sci Rep 6:35613

    Article  CAS  Google Scholar 

  • Zou XD, Guo SQ, Hu ZW, Li WL (2016) NAMPT protects against 6-hydroxydopamine-induced neurotoxicity in PC12 cells through modulating SIRT1 activity. Mol Med Rep 13(5):4058–4064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission (1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data, or the creation of new software used in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Mostofa Jamal.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12640_2022_587_MOESM1_ESM.ppt

Supplementary file1 (PPT 335 KB) Fig. 7 Full gels for all Western blot images used for quantification in Fig. 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, M., Tsukamoto, I., Maki, T. et al. COA-Cl Evokes Protective Responses Against H2O2-and 6-OHDA-Induced Toxic Injury in PC12 Cells. Neurotox Res 40, 2061–2071 (2022). https://doi.org/10.1007/s12640-022-00587-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00587-3

Keywords

Navigation