Skip to main content
Log in

Thallium Induces Antiproliferative and Cytotoxic Activity in Glioblastoma C6 and U373 Cell Cultures via Apoptosis and Changes in Cell Cycle

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Thallium (Tl+) is a heavy metal that causes toxicity in several organs, including the brain. Its cytotoxic profile, combined with its affinity for tumor cells when used as a radioligand for labeling these cells, suggests its potential use as antitumor therapy. In this study, glioblastoma cell lines C6 (from rat) and U373 (from human) were exposed to increased concentrations of thallium(I) acetate (5, 10, 50, 100, or 200 µM) and several toxic endpoints were evaluated, including loss of confluence and morphological changes, loss of cell viability, changes in cell cycle, and apoptosis. Tl+ was detected in cells exposed to thallium(I) acetate, demonstrating efficient uptake mechanism. Confluence in both cell lines decreased in a concentration-dependent manner (50–200 µM), while morphological changes (cell shrinkage and decreased cell volume) were more evident at exposures to higher Tl+ concentrations. For both parameters, the effects of Tl+ were more prominent in C6 cells compared to U373 cells. The same trend was observed for cell viability, with Tl+ affecting this parameter in C6 cells at low concentrations, whereas U373 cells showed greater resistance, with significant changes observed only at the higher concentrations. C6 and U373 cells treated with Tl+ also showed morphological characteristics corresponding to apoptosis. The cytotoxic effects of Tl+ were also assessed in neural and astrocytic primary cultures from the whole rat brain. Primary neural and astrocytic cultures were less sensitive than C6 and U373 cells, showing changes in cell viability at 50 and 100 µM concentrations, respectively. Cell cycle in both brain tumor cell lines was altered by Tl+ in G1/G2 and S phases. In addition, when combined with temozolamide (500 µM), Tl+ elicited cell cycle alterations, increasing SubG1 population. Combined, our novel results characterize and validate the cytotoxic and antiproliferative effects of Tl+ in glioblastoma cells. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdolmaleki S, Ghadermazi M, Aliabadi A (2021) Novel Tl(III) complexes containing pyridine-2,6-dicarboxylate derivatives with selective anticancer activity through inducing mitochondria-mediated apoptosis in A375 cells. Sci Rep 11(1):15699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annibaldi A, Widmann C (2010) Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab Care 13:466–470

    Article  CAS  PubMed  Google Scholar 

  • Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139:125–133

    Article  CAS  PubMed  Google Scholar 

  • Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neuro-Oncol 94:299–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Blain R, Kazantzis G (2015) Thallium In: Handbook on the toxicology of metals. Volume II: Specific Metals (eds. Nordberg GF, Fowler BA, Nordberg M). Amsterdam: Academic Press, Elsevier, 1229–1240 pp

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  • Chia C-F, Chen S-C, Chen C-S, Shih C-M, Lee H-M, Wu C-H (2005) Thallium acetate induces C6 glioma cell apoptosis. Ann NY Acad Sci 1042:523–530

    Article  CAS  PubMed  Google Scholar 

  • Chou Y-T, Lo K-Y (2019) Thallium(I) treatment induces nucleolar stress to stop protein synthesis and cell growth. Sci Rep 9:6905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dang Z, Li L, Kong X, Zhang G, Liu Q, Li H, Li L, Zhang R, Cui W, Wang Y (2020) Evaluation of allelic alterations in short tandem repeats in papillary thyroid cancer. Mol Genet Genomic Med 8:e1164.

    Article  Google Scholar 

  • Doblas S, He T, Saunders D, Pearson J, Hoyle J, Smith N, Lerner M (2010) Towner R (2010) Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging 32:267–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskandari MR, Mashayekhi V, Aslani M, Hosseini MJ (2015) Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening. Environ Toxicol 30:232–241

    Article  CAS  PubMed  Google Scholar 

  • Favari L, Mourelle M (1985) Thallium replaces potassium in activation of the (Na+, K+)-ATPase of rat liver plasma membranes. J Appl Toxicol 5:32–34

    Article  CAS  PubMed  Google Scholar 

  • Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaría A (2005) Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 43:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Galván-Arzate S, Santamaría A (1998) Thallium toxicity. Toxicol Lett 99:1–13

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanzel CE, Verstraeten SV (2006) Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol 216:485–492

    Article  CAS  PubMed  Google Scholar 

  • Hanzel CE, Verstraeten SV (2009) Tl (I) and Tl (III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol Appl Pharmacol 236:59–70

    Article  CAS  PubMed  Google Scholar 

  • Huang S-F, Othman A, Koshkin A, Fischer S, Fischer D, Zamboni N, Ono N, Sawa T, Ogunshola OO (2020) Astrocyte glutathione maintains endothelial barrier stability. Redox Biol 34:101576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc 2006:pdb.prot4493

  • Korotkov SM (2009) Effects of Tl(+) on ion permeability, membrane potential and respiration of isolated rat liver mitochondria. J Bioenerg Biomembr 41:277–287

    Article  CAS  PubMed  Google Scholar 

  • Lebowitz E, Greene MW, Fairchild R, Bradley-Moore PR, Atkins HL, Ansari AN, Richards P, Belgrave E (1975) Thallium-201 for medical use. J Nucl Med 16:151–155

    CAS  PubMed  Google Scholar 

  • Maya-López M, Mireles-García MV, Ramírez-Toledo M, Colín-González AL, Galván-Arzate S, Túnez I, Santamaría A (2018) Thallium-induced toxicity in rat brain crude synaptosomal/mitochondrial fractions is sensitive to anti-excitatory and antioxidant agents. Neurotox Res 33:634–640

    Article  PubMed  CAS  Google Scholar 

  • Melnick RL, Monti LG, Motzkin SM (1976) Uncoupling of mitochondrial oxidative phosphorylation by thallium. Biochem Biophys Res Commun 69:68–73

    Article  CAS  PubMed  Google Scholar 

  • Mulkey JP, Oehme FW (1993) A review of thallium toxicity. Vet Hum Toxicol 35:445–453

    CAS  PubMed  Google Scholar 

  • Osorio-Rico L, Santamaria A, Galván-Arzate S (2017) Thallium toxicity: general issues, neurological symptoms, and neurotoxic mechanisms. Adv Neurobiol 18:345–353

    Article  PubMed  Google Scholar 

  • Osorio-Rico L, Villeda-Hernández J, Santamaría A, Königsberg M, Galván-Arzate S (2015) The N-methyl-D-aspartate receptor antagonist MK-801 prevents thallium-induced behavioral and biochemical alterations in the rat brain. Int J Toxicol 34:505–513

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PA, Nielsen JM, Rasmunssen JH, Jorgensen PL (1998) Contribution to Tl+, K+, and Na+ binding of Asn776, Ser775, Thr774, Thr772, and Tyr771 in cytoplasmic part of fifth transmembrane segment in alpha-subunit of renal Na,K-ATPase. Biochemistry 37:17818–17827

    Article  CAS  PubMed  Google Scholar 

  • Pontén J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486

    Article  PubMed  Google Scholar 

  • Poudyal B, Shrestha P, Chowdhury YS (2021) Thallium-201. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; PMID: 32809421 Free Books & Documents

  • Pourahmad J, Eskandari MR, Daraei B (2010) A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ Toxicol 25:456–467

    Article  CAS  PubMed  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Repetto G, Sanz P, Repetto M (1994) In vitro effects of thallium on mouse neuroblastoma cells. Toxic in Vitro 8:609–611

    Article  CAS  Google Scholar 

  • Richard SA, Ye Y, Li H, Ma L, You C (2018) Glioblastoma multiforme subterfuge as acute cerebral hemorrhage: a case report and literature review. Neurol Int 10:7558

    Article  PubMed  PubMed Central  Google Scholar 

  • Ríos C, Galván-Arzate S, Tapia R (1989) Brain regional thallium distribution in rats acutely intoxicated with Tl2SO4. Arch Toxicol 63:34–37

    Article  PubMed  Google Scholar 

  • Rodríguez-Mercado JJ, Hernández-de la Cruz H, Felipe-Reyes M, Jaramillo-Cruz E, Altamirano-Lozano MA (2015) Evaluation of cytogenetic and DNA damage caused by thallium(I) acetate in human blood cells. Environ Toxicol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  • Romero-García S, López-González JS, Báez-Viveros JL, Aguilar-Cázares D, Prado-García H (2011) Tumor cell metabolism: an integral view. Cancer Biol Ther 12:939–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Pérez Y, Chirino YI, Osornio-Vargas AR, Herrera LA, Morales-Bárcenas R, López-Saavedra A, González-Ramírez I, Miranda J, García-Cuellar CM (2014) Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells. Toxicol Lett 225:12–19

    Article  PubMed  CAS  Google Scholar 

  • Schlegel J, Piontek G, Kersting M, Schuermann M, Kappler R, Scherthan H, Weghorstd C, Buzard G, Mennel H-D (1999) The p16/Cdkn2a/Ink4a gene is frequently deleted in nitrosourea-induced rat glial tumors. Pathobiology 67:202–206

    Article  CAS  PubMed  Google Scholar 

  • Shergalis A, Bankhead A III, Luesakul U, Muangsin N, Neamati N (2018) Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 70:412–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Gameiro A, Grewer C (2008) Thallium ions can replace both sodium and potassium ions in the glutamate transporter excitatory amino acid carrier 1. Biochemistry 47:12923–12930

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV (2006) Relationship between thallium (I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology 222:95–102

    Article  CAS  PubMed  Google Scholar 

  • Villaverde MS, Hanzel CE, Verstraeten SV (2004) In vitro interactions of thallium with components of glutathione-dependent antioxidant defence system. Free Radic Res 38:977–984

    Article  CAS  PubMed  Google Scholar 

  • Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H-H, Chang T-Y, Lin W-C, Wei K-C, Shin J-W (2017) GADD45A plays a protective role against temozolomide treatment in glioblastoma cells. Sci Rep 7:8814

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

MA was supported in part by grants from the National Institute of Environmental Health Sciences, R01ES03771 and R01ES10563. CK was supported by TUBITAK grant 315S088.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edgar Rangel-López or Abel Santamaría.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel-López, E., Robles-Bañuelos, B., Guadiana-Ramírez, N. et al. Thallium Induces Antiproliferative and Cytotoxic Activity in Glioblastoma C6 and U373 Cell Cultures via Apoptosis and Changes in Cell Cycle. Neurotox Res 40, 814–824 (2022). https://doi.org/10.1007/s12640-022-00514-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00514-6

Keywords

Navigation