Skip to main content

Advertisement

Log in

Aluminum-Induced Synaptic Plasticity Impairment via PI3K-Akt-mTOR Signaling Pathway

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) is an environmental neurotoxin with extensive exposure by humans, but the molecular mechanism of its toxicity is still unclear. Several studies have indicated that exposure to aluminum can impair learning and memory function. The purpose of this study was to investigate the mechanism of LTP injury and the effect of aluminum exposure on related signal pathways. The results showed that the axonal dendrites of neurons in the hippocampal CA1 area of rats exposed to maltol aluminum showed neuritic beading and the dendritic spines were reduced. This resulted in dose-dependent LTP inhibition and led to impaired learning and memory function in rats. The PI3K-Akt-mTOR pathway may play a crucial role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LTP:

Long-term potentiation

PI3K:

Phosphatidylinositol 3-kinase

Akt:

Protein kinase B

mTOR:

Mammalian target of rapamycin

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor

References

  • Adamiec R, Uzar J (1988) The role of aluminum in the development of osteomalacia in patients on chronic hemodialysis. Pol Arch Med Wewn 79(1):3

    CAS  PubMed  Google Scholar 

  • Bakar C, Karaman HI, Baba A, Sengünalp F (2009) Effect of high aluminum concentration in water resources on human health, case study: Biga peninsula, northwest part of Turkey. Arch Environ Contam Toxicol 58(4):935–944

    PubMed  Google Scholar 

  • Bakar C, Kun B et al (2010) Effect of high aluminum concentration in water resources on human health, case study: Biga Peninsula, northwest part of Turkey. Arch Environ Contam Toxicol 58(4):935–944

    CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy SBC (2010) The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31(5):575–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrie SC et al (2017) Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways. Annu Rev Genomics Hum Genet 18:115

    CAS  PubMed  Google Scholar 

  • Clements MP, Bliss TV, Lynch MA (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Google Scholar 

  • Dabeka R et al (2011) Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(6):744–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delisle MB, Carpenter S (1984) Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci 63(2):241–250

    CAS  PubMed  Google Scholar 

  • Dickson TC, King CE, McCormack G, Vickers JC (1999) Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer's disease. Exp Neurol 156(1):100–110

    CAS  PubMed  Google Scholar 

  • Divine KK, Lewis JL, Grant PG, Bench G (1999) Quantitative particle-induced X-ray emission imaging of rat olfactory epithelium applied to the permeability of rat epithelium to inhaled aluminum. Chem Res Toxicol 12(7):575–581

    CAS  PubMed  Google Scholar 

  • Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55(2):187–196

    CAS  PubMed  Google Scholar 

  • Goel S et al (2010) Morphological changes and stress responses in neurons in cerebral cortex infiltrated by diffuse astrocytoma. Neuropathology 23(4):262–270

    Google Scholar 

  • Gruart A, Muñoz MD, Delgado-García JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci Off J Soc Neurosci 26(4):1077–1087

    CAS  Google Scholar 

  • Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267

    CAS  PubMed  Google Scholar 

  • He SC, Qiao N, Sheng W (2003) Neurobehavioral, autonomic nervous function and lymphocyte subsets among aluminum electrolytic workers. Int J Immunopathol Pharmacol 16(2):139–144

    CAS  PubMed  Google Scholar 

  • Hideyuki T et al (2005) Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280(11):10444–10454

    Google Scholar 

  • Hori N, Carpenter DO (1994) Functional and morphological changes induced by transient in vivo ischemia. Exp Neurol 129(2):279–289

    CAS  PubMed  Google Scholar 

  • Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, Matsuki N (2001) Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. J Cell Sci 114(Pt 22):4083–4093

    CAS  PubMed  Google Scholar 

  • Jing S et al (2016) The RAS/PI3K pathway is involved in the impairment of long-term potentiation induced by acute aluminum treatment in rats. Biomed Environ Sci 29(11):782–789

    Google Scholar 

  • Kandimalla R, Vallamkondu J, Corgiat EB, Gill KD (2016) Understanding aspects of aluminum exposure in Alzheimer’s disease development. Brain Pathol 26(2):139–154

    CAS  PubMed  Google Scholar 

  • Khalifa M et al., Telmisartan protects against aluminum-induced alzheimer-like pathological changes in rats. Neurotoxicity research, 2019. undefined (undefined): p. undefined

  • Krewski D et al (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health Part B 10(sup1):1–269

    CAS  Google Scholar 

  • Liang RF, Li WQ, Wang XH, Zhang HF, Wang H, Wang JX, Zhang Y, Wan MT, Pan BL, Niu Q (2012) Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rats. Ind Health 50(5):428–436

    CAS  PubMed  Google Scholar 

  • Lisman JE, Goldring MA (1988) Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A 85(14):5320–5324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q et al (2014) Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis 5(2):e1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Liang R, Jia Z, Wang H, Pan B, Zhang Q, Niu Q (2014) Cognitive disorders and tau-protein expression among retired aluminum smelting workers. J Occup Environ Med 56(2):155–160

    CAS  PubMed  Google Scholar 

  • Lynch G, Cox CD, Gall CM (2014) Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 8(8):90

    PubMed  PubMed Central  Google Scholar 

  • Martini M, de Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

    CAS  PubMed  Google Scholar 

  • Mathis DM, Furman JL, and Norris CM, Preparation of acute hippocampal slices from rats and transgenic mice for the study of synaptic alterations during aging and amyloid pathology. J Vis Exp, 2011(49)

  • Mattila PM, Rinne JO, Helenius H, Röyttä M (1999) Neuritic degeneration in the hippocampus and amygdala in Parkinson’s disease in relation to Alzheimer pathology. Acta Neuropathol 98(2):157–164

    CAS  PubMed  Google Scholar 

  • Meyerbaron M et al (2007) Occupational aluminum exposure: evidence in support of its neurobehavioral impact. Neurotoxicology 28(6):1068–1078

    CAS  Google Scholar 

  • Mitrofanis P et al (2003) Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest Ophthalmol Vis Sci 44(12):5196–5205

    Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    CAS  PubMed  Google Scholar 

  • Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290

    CAS  PubMed  Google Scholar 

  • Norman KA (2010) How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model. Hippocampus 20(11):1217–1227

    PubMed  PubMed Central  Google Scholar 

  • Park JS, Bateman MC, Goldberg MP (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis 3(3):215–227

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13(2):139–143

    CAS  PubMed  Google Scholar 

  • Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA (2007) Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. NeuroMolecular Med 9(1):83–100

    CAS  PubMed  Google Scholar 

  • Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain C, Collingridge GL, Isaac JT (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9(5):602–604

    CAS  PubMed  Google Scholar 

  • Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease. Neurotoxicology 23(6):761–774

    CAS  PubMed  Google Scholar 

  • Ren P, Kang P, Li Z, Zhang H, Niu Q (2017) Impact of chronic aluminum exposure on NMDAR1 in the cortex and peripheral blood lymphocytes in rats. Wei Sheng Yan Jiu 46(1):15–20

    PubMed  Google Scholar 

  • Roediger B, Armati PJ (2003) Oxidative stress induces axonal beading in cultured human brain tissue. Neurobiol Dis 13(3):222–229

    CAS  PubMed  Google Scholar 

  • Saito Y, Kawashima A, Ruberu NN, Fujiwara H, Koyama S, Sawabe M, Arai T, Nagura H, Yamanouchi H, Hasegawa M, Iwatsubo T, Murayama S (2003) Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 62(6):644–654

    CAS  PubMed  Google Scholar 

  • Sandra J (2018) AMPA receptor trafficking in natural and pathological aging. Front Mol Neurosci 10:446

    Google Scholar 

  • Shu Y, Zhang H, Kang T, Zhang JJ, Yang Y, Liu H, Zhang L (2013) PI3K/Akt signal pathway involved in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS One 8(12):e81901

    PubMed  PubMed Central  Google Scholar 

  • Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):201–206

    CAS  PubMed  Google Scholar 

  • Song J, Liu Y, Zhang HF, Zhang QL, Niu Q (2014) Effects of exposure to aluminum on long-term potentiation and AMPA receptor subunits in rats in vivo. Biomed Environ Sci 27(2):77–84

    CAS  PubMed  Google Scholar 

  • Swann JW et al (2015) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10(5):617–625

    Google Scholar 

  • Takahashi T, Yagishita S, Amano N, Yamaoka K, Kamei T (1997) Amyotrophic lateral sclerosis with numerous axonal spheroids in the corticospinal tract and massive degeneration of the cortex. Acta Neuropathol 94(3):294–299

    CAS  PubMed  Google Scholar 

  • Tomljenovic L, Shaw CA (2011) Aluminum vaccine adjuvants: are they safe? Curr Med Chem 18(17):2630–2637

    CAS  PubMed  Google Scholar 

  • Verma S, Ranawat P, Sharma N, Nehru B et al (2019) Ginkgo biloba attenuates aluminum lactate-induced neurotoxicity in reproductive senescent female rats: behavioral, biochemical, and histopathological study. Environ Sci Pollut Res Int 26(26):27148–27167

    CAS  PubMed  Google Scholar 

  • Williams RJ (1997) The natural selection of the chemical elements. Cell Mol Life Sci Cmls 53(10):816–829

    CAS  PubMed  Google Scholar 

  • Xu Y et al (2018) Transcriptome-wide identification of differentially expressed genes and long non-coding RNAs in aluminum-treated rat hippocampus. Neurotox Res 4(2):220–232 1–13

    Google Scholar 

  • Yang T, Bavley RL, Fomalont K, Blomstrom KJ, Mitz AR, Turchi J, Rudebeck PH, Murray EA (2014) Contributions of the hippocampus and entorhinal cortex to rapid visuomotor learning in rhesus monkeys. Hippocampus 24(9):1102–1111

    PubMed  PubMed Central  Google Scholar 

  • Yao Z-H et al (2019) Tripchlorolide may improve spatial cognition dysfunction and synaptic plasticity after chronic cerebral hypoperfusion. Neural Plasticity 2019:1–14

    Google Scholar 

  • Yokel RA, Mcnamara PJ (2010) Aluminium toxicokinetics: an updated minireview. Basic Clin Pharmacol Toxicol 88(4):159–167

    Google Scholar 

  • Yuan JH et al (2017) Neuroprotection by plumbagin involves BDNF-TrkB-PI3K/Akt and ERK1/2/JNK pathways in isoflurane-induced neonatal rats. J Pharm Pharmacol 69(7):896–906

    CAS  PubMed  Google Scholar 

  • Zhang QL, Li MQ, Ji JW, Gao FP, Bai R, Chen CY, Wang ZW, Zhang C, Niu Q (2011) In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int J Immunopathol Pharmacol 24(1 Suppl):23S–29S

    CAS  PubMed  Google Scholar 

  • Zhang H, Yang X, Qin X, Niu Q (2016) Caspase-3 is involved in aluminum-induced impairment of long-term potentiation in rats through the Akt/GSK-3β pathway. Neurotox Res 29(4):484–494

    CAS  Google Scholar 

  • Zhu B, Luo L, Moore GR, Paty DW, Cynader MS (2003) Dendritic and synaptic pathology in experimental autoimmune encephalomyelitis. Am J Pathol 162(5):1639–1650

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely thank colleagues for their help and work on the research.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81872599, 81430078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Niu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM1

(XLS 22 kb)

ESM2

(XLSX 25 kb)

ESM3

(DOCX 492 kb)

ESM4

(XLS 55 kb)

ESM5

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xue, X., Li, L. et al. Aluminum-Induced Synaptic Plasticity Impairment via PI3K-Akt-mTOR Signaling Pathway. Neurotox Res 37, 996–1008 (2020). https://doi.org/10.1007/s12640-020-00165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00165-5

Keywords

Navigation