Skip to main content

Advertisement

Log in

Selenium Enhances the Apoptotic Efficacy of Docetaxel Through Activation of TRPM2 Channel in DBTRG Glioblastoma Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The rate of mitosis of cancer cells is significantly higher than normal primary cells with increased metabolic needs, which in turn enhances the generation of reactive oxygen species (ROS) production. Higher ROS production is known to increase cancer cell dependence on ROS scavenging systems to counteract the increased ROS. Therapeutic options which selectively modulate the levels of intracellular ROS in cancers are likely candidates for drug discovery. Docetaxel (DTX) has demonstrated antitumor activity in preclinical and clinical studies. It is thought that DTX induces cell death through excessive ROS production and increased Ca2+ entry. The Ca2+ permeable TRPM2 channel is activated by ROS. Selenium (Se) has been previously used to stimulate apoptosis for the treatment of glioblastoma cells resistant to DTX. However, the potential mechanism(s) of the additive effect of DTX on TRPM2 channels in cancer cells remains unclear. The aim of this study was to evaluate the effect of combination therapy of DTX and Se on activation of TRPM2 in DBTRG glioblastoma cells. DBTRG cells were divided into four treatment groups: control, DTX (10 nM for 10 h), Se (1 μM for 10 h), and DTX+Se. Our study showed that apoptosis (Annexin V and propidium iodide), mitochondrial membrane depolarization (JC1), and ROS production levels were increased in DBTRG cells following treatment with Se and DTX respectively. Cell number and viability, and the levels of apoptosis, JC1, ROS, and [Ca2+]i, induced by DTX, were further increased following addition of Se. We also observed an additive increase in the activation of the NAD-dependent DNA repair enzyme poly (ADP-ribose) polymerase-1 (PARP-1) activity, which was accompanied by a decline in its essential substrate NAD+. As well, the Se- and DTX-induced increases in intracellular Ca2+ florescence intensity were decreased following treatment with the TRPM2 antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA). Therefore, combination therapy with Se and DTX may represent an effective strategy for the treatment of glioblastoma cells and may be associated with TRPM2-mediated increases in oxidative stress and [Ca2+]i.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACA:

N-(p-amylcinnamoyl) anthranilic acid

ADPR:

ADP-ribose

Ca2+ :

Calcium ion

cADPR:

Cyclic ADPR

CPx:

Cumene hydroperoxide

DBTRG-O5MG:

Denver Brain Tumor Research Group O5

DHR 123:

Dihydrorhodamine 123

DTX:

Docetaxel

JC-1:

5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide

MeNAM:

N-methyl-nicotinamide

NAD+:

Nicotinamide adenine dinucleotide.

NADH:

Nicotinamide adenine dinucleotide reduced form

NAM:

Nicotinamide

PARP1:

Poly (ADP-ribose) polymerase 1

PI:

Propidium iodide

ROS:

Reactive oxygen species

Se:

Selenium

TRPA1:

Transient receptor potential ankyrin 1

TRPM2:

Transient receptor potential melastatin 2

TRPV1:

Transient receptor potential vanilloid 1

References

  • Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, Demiryurek AT, Camci C (2015) Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol 36(12):9209–9213

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Chen SJ, Conrad K, Keefer K, Abraham T, Lee JP, Wang JF, Zhang XQ, Hirschler-Laszkiewicz I, Wang HG, Dovat S, Gans B, Madesh M, Cheung JY, Miller BA (2016) Depletion of the human ion channel TRPM2 in neuroblastoma demonstrates its key role in cell survival through modulation of mitochondrial reactive oxygen species and bioenergetics. J Biol Chem 291(47):24449–24464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthier S, Arnaud J, Champelovier P, Col E, Garrel C, Cottet C, Boutonnat J, Laporte F, Faure P, Hazane-Puch F (2017) Anticancer properties of sodium selenite in human glioblastoma cell cluster spheroids. J Trace Elem Med Biol 44:161–176. https://doi.org/10.1016/j.jtemb.2017.04.012

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 53:452–458

    Google Scholar 

  • Braidy N, Berg J, Clement J, Poljak A, Grant R et al. (2018) Role of NAD+ and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidant and Redox Signalling

  • Bustamante S, Jayasena T, Richani D, Gilchrist R, Wu L et al (2018) Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics 14:15

    Article  CAS  Google Scholar 

  • Demirdas A, Naziroglu M, Ovey IS (2017) Duloxetine reduces oxidative stress, apoptosis, and Ca(2+) entry through modulation of TRPM2 and TRPV1 channels in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54(6):4683–4695

    Article  CAS  PubMed  Google Scholar 

  • Elf AK, Bernhardt P, Hofving T, Arvidsson Y, Forssell-Aronsson E, Wängberg B, Nilsson O, Johanson V (2017) NAMPT inhibitor GMX1778 enhances the efficacy of 177Lu-DOTATATE treatment of neuroendocrine tumors. J Nucl Med 58(2):288–292

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Impellizzeri D, Mazzon E, Fakhfouri G, Rahimian R et al (2012) The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. J Neuroinflammation 9:66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Yerga L, Posadas I, de la Torre C, Ruiz-Almansa J, Sansone F, Ortiz Mellet C, Casnati A, García Fernández JM, Ceña V (2017) Docetaxel-loaded nanoparticles assembled from beta-cyclodextrin/calixarene giant surfactants: physicochemical properties and cytotoxic effect in prostate cancer and glioblastoma cells. Front Pharmacol 8:249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Zhang S, Yang Z, Cao S, Jiang X, Pang Z (2014) In vitro and in vivo intracellular distribution and anti-glioblastoma effects of docetaxel-loaded nanoparticles functioned with IL-13 peptide. Int J Pharm 466(1–2):8–17

    Article  CAS  PubMed  Google Scholar 

  • Ghoochani A, Hatipoglu Majernik G, Sehm T, Wach S, Buchfelder M, Taubert H, Eyupoglu IY, Savaskan N (2016) Cabazitaxel operates anti-metastatic and cytotoxic via apoptosis induction and stalls brain tumor angiogenesis. Oncotarget 7(25):38306–38318

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Hazane-Puch F, Arnaud J, Trocme C, Faure P, Laporte F et al (2016) Sodium selenite decreased HDAC activity, cell proliferation and induced apoptosis in three human glioblastoma cells. Anti Cancer Agents Med Chem 16(4):490–500

    Article  CAS  Google Scholar 

  • Hua H, Zhang X, Mu H, Meng Q, Jiang Y, Wang Y, Lu X, Wang A, Liu S, Zhang Y, Wan Z, Sun K (2018) RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy. Int J Pharm 543(1–2):179–189

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Bian D, Jiang B, Zhai Q, Gao N, Wang R (2017) TRPA1 contributed to the neuropathic pain induced by docetaxel treatment. Cell Biochem Funct 35(3):141–143

    Article  CAS  PubMed  Google Scholar 

  • Joshi DC, Bakowska JC (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp(51)

  • Ju RJ, Mu LM, Li XT, Li CQ, Cheng ZJ et al. (2018) Development of functional docetaxel nanomicelles for treatment of brain glioma. Artif Cells Nanomed Biotechnol 46:sup1, 1180–1190

  • Lev-Ram V, Ellisman MH (1995) Axonal activation-induced calcium transients in myelinating Schwann cells, sources, and mechanisms. J Neurosci 15(4):2628–2637

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M (2017) Activation of TRPM2 and TRPV1 channels in dorsal root ganglion by NADPH oxidase and protein kinase C molecular pathways: a patch clamp study. J Mol Neurosci 61(3):425–435

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M, Braidy N (2017) Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Front Physiol 8:1040

    Article  PubMed  PubMed Central  Google Scholar 

  • Naziroglu M, Luckhoff A (2008a) A calcium influx pathway regulated separately by oxidative stress and ADP-ribose in TRPM2 channels: single channel events. Neurochem Res 33(7):1256–1262

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M, Luckhoff A (2008b) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270(1–2):152–158

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M, Karaoglu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195(2–3):221–230

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M, Tokat S, Demirci S (2012a) Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J Recept Signal Transduct Res 32(6):290–297

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M, Yildiz K, Tamturk B, Erturan I, Flores-Arce M (2012b) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    Article  CAS  PubMed  Google Scholar 

  • Nur G, Naziroglu M, Deveci HA (2017) Synergic prooxidant, apoptotic and TRPV1 channel activator effects of alpha-lipoic acid and cisplatin in MCF-7 breast cancer cells. J Recept Signal Transduct Res 37(6):569–577

    Article  CAS  PubMed  Google Scholar 

  • Park SO, Yoo YB, Kim YH, Baek KJ, Yang JH, Choi PC, Lee JH, Lee KR, Park KS (2015) Effects of combination therapy of docetaxel with selenium on the human breast cancer cell lines MDA-MB-231 and MCF-7. Ann Surg Treat Res 88(2):55–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Saikali S, Avril T, Collet B, Hamlat A, Bansard JY, Drenou B, Guegan Y, Quillien V (2007) Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neuro-Oncol 81(2):139–148

    Article  CAS  Google Scholar 

  • Sakalli Cetin E, Naziroglu M, Cig B, Ovey IS, Aslan Kosar P (2017) Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel. J Recept Signal Transduct Res 37(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Zhou J, Zhang Q, Gao H, Liu Y, Zong T, He Q (2015) Arginine-glycine-aspartic acid-modified lipid-polymer hybrid nanoparticles for docetaxel delivery in glioblastoma multiforme. J Biomed Nanotechnol 11(3):382–391

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Article  Google Scholar 

  • Tabaczar S, Koceva-Chyla A, Matczak K, Gwozdzinski K (2010) Molecular mechanisms of antitumor activity of taxanes. I. Interaction of docetaxel with microtubules. Postepy Hig Med Dosw (Online) 64:568–581

    Google Scholar 

  • Tanimura K, Uchino J, Tamiya N, Kaneko Y, Yamada T, Yoshimura K, Takayama K (2018) Treatment rationale and design of the RAMNITA study: a phase II study of the efficacy of docetaxel + ramucirumab for non-small cell lung cancer with brain metastasis. Medicine (Baltimore) 97(23):e11084

    Article  CAS  Google Scholar 

  • Uguz AC, Naziroglu M, Espino J, Bejarano I, Gonzalez D et al (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23

    Article  CAS  PubMed  Google Scholar 

  • Uslusoy F, Naziroglu M, Cig B (2017) Inhibition of the TRPM2 and TRPV1 channels through Hypericum perforatum in sciatic nerve injury-induced rats demonstrates their key role in apoptosis and mitochondrial oxidative stress of sciatic nerve and dorsal root ganglion. Front Physiol 8:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Vercelli C, Barbero R, Cuniberti B, Odore R, Re G (2015) Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells. Vet Comp Oncol 13(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Huang L, Yue J (2017) Oxidative stress activates the TRPM2-Ca(2+)-CaMKII-ROS signaling loop to induce cell death in cancer cells. Biochim Biophys Acta 1864(6):957–967

    Article  CAS  Google Scholar 

  • Wrobel JK, Wolff G, Xiao R, Power RF, Toborek M (2016) Dietary selenium supplementation modulates growth of brain metastatic tumors and changes the expression of adhesion molecules in brain microvessels. Biol Trace Elem Res 172(2):395–407

    Article  CAS  PubMed  Google Scholar 

  • Xu HL, Mao KL, Lu CT, Fan ZL, Yang JJ, Xu J, Chen PP, ZhuGe DL, Shen BX, Jin BH, Xiao J, Zhao YZ (2016) An injectable acellular matrix scaffold with absorbable permeable nanoparticles improves the therapeutic effects of docetaxel on glioblastoma. Biomaterials 107:44–60

    Article  CAS  PubMed  Google Scholar 

  • Yakubov E, Buchfelder M, Eyupoglu IY, Savaskan NE (2014) Selenium action in neuro-oncology. Biol Trace Elem Res 161(3):246–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Lu JT, Jiang WX, Lu YB, Wu M, Wei EQ, Zhang WP, Tang C (2015) NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms. Neuroscience 291:230–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank technician Hulusi Gül (BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey) for their help in performing cell number and cell viability analyses.

Financial Support

The study was supported by BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey (Project No: 2018-02).

Author information

Authors and Affiliations

Authors

Contributions

KE, MN, and NB formulated the present hypothesis and MN and NB were responsible for writing the report. MN performed the confocal analyses and the LC-MS analysis. ZSA was responsible for analysis of the data. KE, ZSA, and NB made critical revision of the manuscript.

Corresponding author

Correspondence to Nady Braidy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertilav, K., Nazıroğlu, M., Ataizi, Z.S. et al. Selenium Enhances the Apoptotic Efficacy of Docetaxel Through Activation of TRPM2 Channel in DBTRG Glioblastoma Cells. Neurotox Res 35, 797–808 (2019). https://doi.org/10.1007/s12640-019-0009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-0009-5

Keywords

Navigation