Skip to main content

Advertisement

Log in

Distinct Impacts of Fullerene on Cognitive Functions of Dementia vs. Non-dementia Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Fullerene is a family of carbon materials widely applied in modern medicine and ecosystem de-contamination. Its wide application makes human bodies more and more constantly exposed to fullerene particles. Since fullerene particles are able to cross the blood-brain barrier (BBB) (Yamago et al. 1995), if and how fullerene would affect brain functions need to be investigated for human health consideration. For this purpose, we administered fullerene on subcortical ischemic vascular dementia (SIVD) model mice and sham mice, two types of mice with distinct penetration properties of BBB and hence possibly distinct vulnerabilities to fullerene. We studied the spatial learning and memory abilities of mice with Morris water maze (MWM) and the neuroplasticity properties of the hippocampus. Results showed that fullerene administration suppressed outcomes of MWM in sham mice, along with suppressed long-term potentiation (LTP) and dendritic spine densities. Oppositely, recoveries of MWM outcomes and neuroplasticity properties were observed in fullerene-treated SIVD mice. To further clarify the mechanism of the impact of fullerene on neuroplasticity, we measured the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) by western blot assay. Results suggest that the distinct impacts of fullerene on behavior test and neuroplasticity may be conducted through postsynaptic regulations that were mediated by BDNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali SS, Hardt JI, Dugan LL (2008) SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomedicine 4:283–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SS, Hardt JI, Quick KL, Kimhan JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37:1191–1202

    CAS  PubMed  Google Scholar 

  • Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol 166:99–114

    CAS  PubMed  Google Scholar 

  • An L, Liu S, Yang Z, Zhang T (2012) Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett 213:220–227

    CAS  PubMed  Google Scholar 

  • Bhatt DH, Zhang S, Gan WB (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282

    CAS  PubMed  Google Scholar 

  • Bobylev AG, Kornev AB, Bobyleva LG, Shpagina MD, Fadeeva IS, Fadeev RS, Deryabin DG, Balzarini J, Troshin PA, Podlubnaya ZA (2011) Fullerenolates: metallated polyhydroxylated fullerenes with potent anti-amyloid activity. Org Biomol Chem 9:5714–5719

    CAS  PubMed  Google Scholar 

  • Chae S-R, Hotze EM, Wiesner MR (2014) Chapter 21 - possible applications of fullerene nanomaterials in water treatment and reuse A2 - street, Anita. In: Sustich R, Duncan J, Savage N (eds) Nanotechnology applications for clean water (second edition). William Andrew Publishing, Oxford, pp 329–338

    Google Scholar 

  • Cunha C, Brambilla R, Thomas K (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1–14

    PubMed  PubMed Central  Google Scholar 

  • Dugan LL, Gabrielsen JK, Yu SP, Lin T-S, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3:129–135

    CAS  PubMed  Google Scholar 

  • Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246

    PubMed  Google Scholar 

  • Dugan LL, Tian LL, Quick KL, Hardt JI, Karimi M, Brown C, Loftin S, Flores H, Moerlein SM, Polich J (2014) Carboxyfullerene neuroprotection postinjury in parkinsonian nonhuman primates. Ann Neurol 76:393–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A 94:9434–9439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumitriu D, Rodriguez A, Morrison J (2011) High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy. Nat Protoc 6:1391–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enright LE, Zhang S, Murphy TH (2007) Fine mapping of the spatial relationship between acute ischemia and dendritic structure indicates selective vulnerability of layer V neuron dendritic tufts within single neurons in vivo. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 27:1185–1200

    Google Scholar 

  • Friberg H, Wieloch T, Castilho RF (2002) Mitochondrial oxidative stress after global brain ischemia in rats. Neurosci Lett 334:111–114

    CAS  PubMed  Google Scholar 

  • Gao J, Zhang X, Yu M, Ren G, Yang Z (2015) Cognitive deficits induced by multi-walled carbon nanotubes via the autophagic pathway. Toxicology 337:21–29

    CAS  PubMed  Google Scholar 

  • Geckeler KE, Samal S (2001) Rapid assessment of the free radical scavenging property of fullerenes. Fuller Sci Technol 9:17–23

    CAS  Google Scholar 

  • Gordon R, Podolski I, Makarova E, Deev A, Mugantseva E, Khutsyan S, Sengpiel F, Murashev A, Vorobyov V (2017) Intrahippocampal pathways involved in learning/memory mechanisms are affected by intracerebral infusions of amyloid-β25-35 peptide and hydrated fullerene C60 in rats. J Alzheimers Dis Jad 58:1–14

    Google Scholar 

  • Gottmann K, Mittmann T, Lessmann V (2009) BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 199:203–234

    CAS  PubMed  Google Scholar 

  • Han BH, D’Costa A, Back SA, Parsadanian M, Patel S, Shah AR, Gidday JM, Srinivasan A, Deshmukh M, Holtzman DM (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 7:38–53

    CAS  PubMed  Google Scholar 

  • Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775–5781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han G, An L, Yang B, Si L, Zhang T (2013) Nicotine-induced impairments of spatial cognition and long-term potentiation in adolescent male rats. Hum Exp Toxicol 33:203–213

    CAS  PubMed  Google Scholar 

  • Herms J, Dorostkar MM (2016) Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol 11:221–250

    CAS  PubMed  Google Scholar 

  • Hsieh F-Y, Zhilenkov AV, Voronov II, Khakina EA, Mischenko DV, Troshin PA, Hsu S-h (2017) Water-soluble fullerene derivatives as brain medicine: surface chemistry determines if they are neuroprotective and antitumor. ACS Appl Mater Interfaces 9:11482–11492

    CAS  PubMed  Google Scholar 

  • Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ihara M, Tomimoto H (2011) Lessons from a mouse model characterizing features of vascular cognitive impairment with white matter changes. J Aging Res 2011:978761

    PubMed  PubMed Central  Google Scholar 

  • Irie K, Nakamura Y, Ohigashi H, Tokuyama H, Yamago S, Nakamura E (1996) Photocytotoxicity of water-soluble fullerene derivatives. Biosci Biotechnol Biochem 60:1359–1361

    CAS  PubMed  Google Scholar 

  • Ishii A, Ohkoshi N, Yoshida M, Tamaoka A (2013) P.19.8 the effect of water-soluble fullerene with different number of hydroxyl groups in muscle regeneration process of experimental murine skeletal muscle. Neuromuscul Disord 23:838

    Google Scholar 

  • Ishii A, Yoshida M, Ohkoshi N, Ueno H, Kokubo K, Tamaoka A (2014) G.P.204: the effect of water-soluble fullerene in muscle regeneration process. Neuromuscul Disord 24:878

    Google Scholar 

  • Kotelnikova RA, Smolina AV, Grigoryev VV, Faingold II, Mischenko DV, Rybkin AY, Poletayeva DA, Vankin GI, Zamoyskiy VL, Voronov II, Troshin PA, Kotelnikov AI, Bachurin SO (2014) Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. MedChemComm 5:1664–1668

    CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    CAS  Google Scholar 

  • Leßmann V, Brigadski T (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res 65:11–22

    PubMed  Google Scholar 

  • Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    CAS  PubMed  Google Scholar 

  • Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98

    PubMed  PubMed Central  Google Scholar 

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB (2010) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 24:2757–2762

    Google Scholar 

  • Makarova EG, Gordon RY, Podolski IY (2012) Fullerene C60 prevents neurotoxicity induced by intrahippocampal microinjection of amyloid-beta peptide. J Nanosci Nanotechnol 12:119–126

    CAS  PubMed  Google Scholar 

  • Murín R, Drgová A, Kaplán P, Dobrota D, Lehotský J (2001) Ischemia/reperfusion-induced oxidative stress causes structural changes of brain membrane proteins and lipids. Gen Physiol Biophys 20:431–438

    PubMed  Google Scholar 

  • Narayanan SN, Jetti R, Gorantla VR, Kumar RS, Nayak S, Bhat PG (2014) Appraisal of the effect of brain impregnation duration on neuronal staining and morphology in a modified Golgi–Cox method. J Neurosci Methods 235:193–207

    PubMed  Google Scholar 

  • Narita M, Nishiumi H, Sato C, Amano F (2004) Water treatment application of C60-C70 fullerene as visible light sensitizer. Asian Pacific Confederation of Chemical Engineering congress program and abstracts 2004: 623–623

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Franklin K (2007) The mouse brain in stereotaxic coordinates. El Sevier Academic Press

  • Podlubnaya ZA, Podol’Skii IY, Shpagina MD, Marsagishvili LG (2006) Electron microscopic study of the effect of fullerene on the formation of amyloid fibrils by the Aβ 25–35 peptide. Biophysics -Pergamon- C/C of Biofizika 51:701–704

    Google Scholar 

  • Podolski IY, Podlubnaya ZA, Godukhin OV (2010) Fullerenes C 60 , antiamyloid action, the brain, and cognitive processes. Biophysics 55:71–76

    Google Scholar 

  • Podolski IY, Podlubnaya ZA, Kosenko EA, Mugantseva EA, Makarova EG, Marsagishvili LG, Shpagina MD, Kaminsky YG, Andrievsky GV, Klochkov VK (2007) Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 7:1479–1485

    CAS  PubMed  Google Scholar 

  • Prylutskyy YI, Vereshchaka IV, Maznychenko AV, Bulgakova NV, Gonchar OO, Kyzyma OA, Ritter U, Scharff P, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI (2017) C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J Nanobiotechnol 15:8

    Google Scholar 

  • Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29:117–128

    CAS  PubMed  Google Scholar 

  • Radak D, Resanovic I, Isenovic ER (2013) Link between oxidative stress and acute brain ischemia. Angiology 65:667–676

    PubMed  Google Scholar 

  • Rodriguez A, Ehlenberger DB, Dickstein DL, Hof PR, Wearne SL (2008) Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3:e1997

    PubMed  PubMed Central  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    CAS  PubMed  Google Scholar 

  • Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406

    CAS  PubMed  Google Scholar 

  • Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    PubMed  Google Scholar 

  • Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N (1996) Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 393:139–145

    PubMed  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229:44–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorobyov V, Kaptsov V, Gordon R, Makarova E, Podolski I, Sengpiel F (2015) Neuroprotective effects of hydrated fullerene C60: cortical and hippocampal EEG interplay in an amyloid-infused rat model of Alzheimer’s disease. J Alzheimers Dis 45:217–233

    CAS  PubMed  Google Scholar 

  • Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389

    CAS  PubMed  Google Scholar 

  • Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Phys Cell Phys 290(6):C1495–C1502

    CAS  Google Scholar 

  • Yin G, Xu Z (2002) Synthesis of water-soluble C 60 derivatives and their scavenging free radical activity. SCIENCE CHINA Chem 45:54–59

    CAS  Google Scholar 

  • Yin JJ, Lao F, Fu PP, Wamer WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30:611–621

    CAS  PubMed  Google Scholar 

  • Yudoh K, Karasawa RF, Masuko K, Fau - Kato T, Kato T (2009a) Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int J Nanomedicine 4:217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yudoh K, Karasawa R, Masuko K, Kato T (2009b) Water-soluble fullerene (C60) inhibits the osteoclast differentiation and bone destruction in arthritis. Int J Nanomedicine 4:233–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z (2013) Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents. Pharmaceutics 5(4):525–541

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by grants from the National Natural Science Foundation of China (81571804, 81771979 from Z. Yang) and China Postdoctoral Science Foundation (2016M601250 from Y. Wang).

Author information

Authors and Affiliations

Authors

Contributions

Y. Wu, R. Wang, and Y. Wang equally contributed to this study. Y. Wu and R. Wang conducted most of the experiments and part of data analysis. Y. Wang designed experiments, conducted data analysis, and prepared the manuscript. J. Gao and L. Feng designed and conducted some of the experiments. Z. Yang designed the experiments and prepared the manuscript.

Corresponding author

Correspondence to Zhuo Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, R., Wang, Y. et al. Distinct Impacts of Fullerene on Cognitive Functions of Dementia vs. Non-dementia Mice. Neurotox Res 36, 736–745 (2019). https://doi.org/10.1007/s12640-019-00075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00075-1

Keywords

Navigation