Skip to main content

Advertisement

Log in

Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Streptozotocin has been widely used to mimic some aspects of Alzheimer’s disease (AD). However, especially in mice, several characteristics involved in the streptozotocin (STZ)-induced AD pathology are not well known. The main purpose of this study was to evaluate temporally the expression of AD-related proteins, such as amyloid-β (Aβ), choline acetyltransferase (ChAT), synapsin, axonal neurofilaments, and phosphorylated Tau in the hippocampus following intracerebroventricular (icv) administration of STZ in adult mice. We also analyzed the impact of STZ on short- and long-term memory by novel object recognition test. Male mice were injected with STZ or citrate buffer, and AD-related proteins were evaluated by immunoblotting assays in the hippocampus at 7, 14, or 21 days after injection. No differences between the groups were found at 7 days. The majority of AD markers evaluated were found altered at 14 days, i.e., the STZ group showed increased amyloid-β protein and neurofilament expression, increased phosphorylation of Tau protein, and decreased synapsin expression levels compared to controls. Except for synapsin, all of these neurochemical changes were transient and did not last up to 21 days of STZ injection. Moreover, both short-term and long-term memory deficits were demonstrated after STZ treatment at 14 and 21 days after STZ treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blokland A, Jolles J (1993) Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav 44:491–494

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47:711–725. doi:10.1007/s12035-012-8375-5

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2014) Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice1. Mol Neurobiol 49:547–562. doi:10.1007/s12035-013-8539-y

    Article  CAS  PubMed  Google Scholar 

  • Chung SH (2009) Aberrant phosphorylation in the pathogenesis of Alzheimer’s disease. BMB Rep 42:467–474

    Article  CAS  PubMed  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464. doi:10.1002/ana.410270502

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. In: Am J Pathol, vol 175. vol 5. United States, pp 2089–2098. doi:10.2353/ajpath.2009.090157

  • Elcioglu HK, Aslan E, Ahmad S, Alan S, Salva E, Elcioglu OH, Kabasakal L (2016) Tocilizumab’s effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer’s model. Mol Cell Biochem 420:21–28. doi:10.1007/s11010-016-2762-6

    Article  CAS  PubMed  Google Scholar 

  • Goedert M (1996) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Ann N Y Acad Sci 777:121–131

    Article  CAS  PubMed  Google Scholar 

  • Grunblatt E, Hoyer S, Riederer P (2004) Gene expression profile in streptozotocin rat model for sporadic Alzheimer’s disease. J Neural Transm 111:367–386. doi:10.1007/s00702-003-0030-x

    Article  CAS  PubMed  Google Scholar 

  • Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770. doi:10.1111/j.1471-4159.2006.04368.x

    Article  PubMed  Google Scholar 

  • Hu YY et al (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320:156–160

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441

    PubMed  PubMed Central  Google Scholar 

  • Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, Salkovic-Petrisic M (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna) 122:577–592. doi:10.1007/s00702-015-1394-4

    Article  CAS  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Wirtz P, Schuhmann V, Galmbacher R (1998) Effects of estradiol (−17beta) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin. J Neural Transm 105:1045–1063

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217. doi:10.1146/annurev.ne.19.030196.001155

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. In: Prog Neurobiol, vol 83. vol 3. England, pp 131–139. doi:10.1016/j.pneurobio.2007.08.002

  • Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G (2014) Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology 231:345–356. doi:10.1007/s00213-013-3240-4

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xie F, Alvarado-Diaz A, Smith MA, Moreira PI, Zhu X, Perry G (2011) Neurofilamentopathy in neurodegenerative diseases. Open Neurol J 5:58–62. doi:10.2174/1874205X01105010058

    Article  PubMed  PubMed Central  Google Scholar 

  • Majkutewicz I et al (2016) Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats. Behav Brain Res 308:24–37. doi:10.1016/j.bbr.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  • Muller AP et al (2012) Physical exercise exacerbates memory deficits induced by intracerebroventricular STZ but improves insulin regulation of H(2)O(2) production in mice synaptosomes. J Alzheimers Dis 30:889–898. doi:10.3233/jad-2012-112066

    CAS  PubMed  Google Scholar 

  • Muller D, Nitsch RM, Wurtman RJ, Hoyer S (1998) Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 105:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Muller-Spahn F, Hock C (1999) Risk factors and differential diagnosis of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):37–42

    Article  PubMed  Google Scholar 

  • Nakamura Y et al (1997) Abnormal distribution of neurofilament L in neurons with Alzheimer’s disease. Neurosci Lett 225:201–204

    Article  CAS  PubMed  Google Scholar 

  • Perdahl E, Adolfsson R, Alafuzoff I, Albert KA, Nestler EJ, Greengard P, Winblad B (1984) Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multi-infarct. Dementia. J Neural Transm 60:133–141

    Article  CAS  PubMed  Google Scholar 

  • Pinton S, da Rocha JT, Zeni G, Nogueira CW (2010) Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. In: Neurosci Lett, vol 472. vol 1. 2010 Elsevier Ireland Ltd, Ireland, pp 56–60. doi:10.1016/j.neulet.2010.01.057

  • Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21:479–505. doi:10.1146/annurev.neuro.21.1.479

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Honig L, Vonsattel JP, Tang MX, Mayeux R (2009) Memory performance is related to amyloid and tau pathology in the hippocampus. J Neurol Neurosurg Psychiatry 80:715–721. doi:10.1136/jnnp.2008.154146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos DB et al (2015) Probucol mitigates streptozotocin-induced cognitive and biochemical changes in mice. Neuroscience 284:590–600. doi:10.1016/j.neuroscience.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  • Santos TO, Mazucanti CH, Xavier GF, Torrao AS (2012) Early and late neurodegeneration and memory disruption after intracerebroventricular streptozotocin. Physiol Behav 107:401–413. doi:10.1016/j.physbeh.2012.06.019

    Article  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Sharma B, Singh N, Singh M, Jaggi AS (2008) Exploitation of HIV protease inhibitor Indinavir as a memory restorative agent in experimental dementia. In: Pharmacol Biochem Behav, vol 89. vol 4. United States, pp 535–545. doi:10.1016/j.pbb.2008.02.012

  • Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2007) Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 52:836–843. doi:10.1016/j.neuropharm.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  • Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437. doi:10.1602/neurorx.2.3.423

    Article  PubMed  PubMed Central  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  • Tota S, Awasthi H, Kamat PK, Nath C, Hanif K (2010) Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav Brain Res 209:73–79. doi:10.1016/j.bbr.2010.01.017

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cheng H, Che Z (2016) Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model. Mol Med Rep 13:4215–4220. doi:10.3892/mmr.2016.5052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507:81–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), University of Sao Paulo—Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). K.G. R, B.R.A., and M.S.H. were the recipients of fellowships from FAPESP. Thanks are due to Adilson S. Alves for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Sorrentino Hernandes.

Ethics declarations

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravelli, K.G., Rosário, B.d.A., Camarini, R. et al. Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice. Neurotox Res 31, 327–333 (2017). https://doi.org/10.1007/s12640-016-9684-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9684-7

Keywords

Navigation