Skip to main content

Advertisement

Log in

N-Methyl-d-aspartate Preconditioning Prevents Quinolinic Acid-Induced Deregulation of Glutamate and Calcium Homeostasis in Mice Hippocampus

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The search for new therapeutic strategies through modulation of glutamatergic transmission using effective neuroprotective agents is essential. Glutamatergic excitotoxicity is a major factor common to neurodegenerative diseases and in acute events such as cerebral ischemia, traumatic brain injury and epilepsy. We have previously demonstrated that N-methyl-d-aspartate (NMDA) preconditioning in mice showed 50 % of protection against seizures and full protection against damage to neuronal tissue induced by quinolinic acid (QA). In this study, cellular and molecular mechanisms involved on NMDA preconditioning and neuroprotection were investigated in mice treated with NMDA 24 h before QA insult. Calcium uptake and d-aspartate release from hippocampal slices obtained from mice treated with NMDA plus QA and not displaying seizures (protected mice) were similar to control (saline) or NMDA preconditioned mice. Increased calcium uptake and glutamate release is evidenced in unprotected (convulsed) mice as well as QA control, demonstrating that calcium and glutamate are involved in NMDA-induced preconditioning. Increased glutamate release evoked by QA was blocked by MK-801, whereas increased calcium uptake was abolished by voltage-dependent calcium channels inhibitors, but not MK-801. NMDA preconditioning is effective in normalizing the deregulation of glutamate transport and calcium homeostasis evoked by QA due to aberrant NMDA receptors activation that culminates in seizures and hippocampal cells damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HBSS:

Hank’s balanced salt solution

KRB:

Krebs–Ringer bicarbonate buffer

MK-801:

(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate

NMDA:

N-Methyl-d-aspartate

NMDAR:

N-Methyl-d-aspartate receptors

QA:

Quinolinic acid

ROS:

Reactive oxygen species

References

  • Arthur PG, Lim SC, Meloni BP, Munns SE, Chan A, Knuckey NW (2004) The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes. Brain Res 1017(1-2):146–154

    Article  CAS  PubMed  Google Scholar 

  • Atlas D (2013) The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem 82:607–635

    Article  CAS  PubMed  Google Scholar 

  • Bigdeli MR, Rahnema M, Khoshbaten A (2009) Preconditioning with sublethal ischemia or intermittent normobaric hyperoxia up-regulates glutamate transporters and tumor necrosis factor-alpha converting enzyme in the rat brain. J Stroke Cerebrovasc Dis 18(5):336–342

    Article  PubMed  Google Scholar 

  • Boeck CR, Ganzella M, Lottermann A, Vendite D (2004) NMDA preconditioning protects against seizures and hippocampal neurotoxicity induced by quinolinic acid in mice. Epilepsia 45(7):745–750

    Article  CAS  PubMed  Google Scholar 

  • Boeck CR, Kroth EH, Bronzatto MJ, Vendite D (2005) Adenosine receptors co-operate with NMDA preconditioning to protect cerebellar granule cells against glutamate neurotoxicity. Neuropharmacology 49(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Cano-Abad MF, Villarroya M, Garcia AG, Gabilan NH, Lopez MG (2001) Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J Biol Chem 276(43):39695–39704

    Article  CAS  PubMed  Google Scholar 

  • Castaldo P, Cataldi M, Magi S, Lariccia V, Arcangeli S, Amoroso S (2009) Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases. Prog Neurobiol 87(1):58–79

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  • Chuang DM, Gao XM, Paul SM (1992) N-Methyl-d-aspartate exposure blocks glutamate toxicity in cultured cerebellar granule cells. Mol Pharmacol 42(2):210–216

    CAS  PubMed  Google Scholar 

  • Cruz SL, Gauthereau MY, Camacho-Munoz C, Lopez-Rubalcava C, Balster RL (2003) Effects of inhaled toluene and 1,1,1-trichloroethane on seizures and death produced by N-methyl-d-aspartic acid in mice. Behav Brain Res 140(1–2):195–202

    Article  CAS  PubMed  Google Scholar 

  • de Araujo HerculanoB, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97

    Article  Google Scholar 

  • Dickie BG, Holmes C, Greenfield SA (1996) Neurotoxic and neurotrophic effects of chronic N-methyl-d-aspartate exposure upon mesencephalic dopaminergic neurons in organotypic culture. Neuroscience 72(3):731–741

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE (2006) Pro-survival signalling from the NMDA receptor. Biochem Soc Trans 34(Pt 5):936–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26(2):81–89

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heyes MP, Mefford IN, Quearry BJ, Dedhia M, Lackner A (1990) Increased ratio of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Ann Neurol 27(6):666–675

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW (2003) Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Stroke 34(4):1015–1020

    Article  CAS  PubMed  Google Scholar 

  • Hou XY, Zhang GY, Yan JZ, Chen M, Liu Y (2002) Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia. Brain Res 955(1–2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig AM, Cynader M, Raymond LA (2012) Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci 32(12):3992–4003

    Article  CAS  PubMed  Google Scholar 

  • Lee LL, Galo E, Lyeth BG, Muizelaar JP, Berman RF (2004) Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker. Exp Neurol 190(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kato K, Ikeda J, Morita I, Murota S (2001) A narrow window for rescuing cells by the inhibition of calcium influx and the importance of influx route in rat cortical neuronal cell death induced by glutamate. Neurosci Lett 304(1–2):29–32

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Luoma JI, Kelley BG, Mermelstein PG (2011) Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 76(9):845–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marganella C, Bruno V, Matrisciano F, Reale C, Nicoletti F, Melchiorri D (2005) Comparative effects of levobupivacaine and racemic bupivacaine on excitotoxic neuronal death in culture and N-methyl-d-aspartate-induced seizures in mice. Eur J Pharmacol 518(2–3):111–115

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Tanaka S, Fujii Y, Shimizu K, Nagashima K, Kamibayashi M, Uehara T, Okuma Y, Nomura Y (1999) Neuroprotective effects of a dihydropyridine derivative, 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid methyl 6-(5-phenyl-3-pyrazolyloxy)hexyl ester (CV-159), on rat ischemic brain injury. Life Sci 64(10):869–878

    Article  CAS  PubMed  Google Scholar 

  • Molz S, Decker H, Oliveira IJ, Souza DO, Tasca CI (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 30(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Molz S, Dal-Cim T, Budni J, Martin-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues AL, Lopez MG, Tasca CI (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase 3β pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Limbrick DD Jr, Rafiq A, DeLorenzo RJ (2000) Induction of spontaneous recurrent epileptiform discharges causes long-term changes in intracellular calcium homeostatic mechanisms. Cell Calcium 28(3):181–193

    Article  CAS  PubMed  Google Scholar 

  • Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE (2005) Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci 25(17):4279–4287

    Article  CAS  PubMed  Google Scholar 

  • Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115

    Article  CAS  PubMed  Google Scholar 

  • Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277(18):3622–3636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pringle AK, Thomas SJ, Signorelli F, Iannotti F (1999) Ischaemic pre-conditioning in organotypic hippocampal slice cultures is inversely correlated to the induction of the 72 kDa heat shock protein (HSP72). Brain Res 845(2):152–164

    Article  CAS  PubMed  Google Scholar 

  • Raza M, Pal S, Rafiq A, DeLorenzo RJ (2001) Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res 903(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Lara DR, de Faria Maraschin J, da Silveira Perla A, Onofre Souza D (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864(1):40–43

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, Hardingham GE (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26(17):4509–4518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sribnick EA, Del Re AM, Ray SK, Woodward JJ, Banik NL (2009) Estrogen attenuates glutamate-induced cell death by inhibiting Ca2 + influx through L-type voltage-gated Ca2+ channels. Brain Res 1276:159–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64(2):185–218

    Article  CAS  PubMed  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1(8):609–620

    Article  CAS  PubMed  Google Scholar 

  • Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Noshita N, Lewen A, Kim GW, Chan PH (2001) Neuronal expression of the DNA repair protein Ku 70 after ischemic preconditioning corresponds to tolerance to global cerebral ischemia. Stroke 32(10):2388–2393

    Article  CAS  PubMed  Google Scholar 

  • Tauskela JS, Fang H, Hewitt M, Brunette E, Ahuja T, Thivierge JP, Comas T, Mealing GA (2008) Elevated synaptic activity preconditions neurons against an in vitro model of ischemia. J Biol Chem 283(50):34667–34676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tauskela JS, Aylsworth A, Hewitt M, Brunette E, Mealing GA (2012) Preconditioning induces tolerance by suppressing glutamate release in neuron culture ischemia models. J Neurochem 122(2):470–481

    Article  CAS  PubMed  Google Scholar 

  • Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. NeuroReport 11(2):249–253

    Article  CAS  PubMed  Google Scholar 

  • Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627

    Article  CAS  PubMed  Google Scholar 

  • Valentim LM, Rodnight R, Geyer AB, Horn AP, Tavares A, Cimarosti H, Netto CA, Salbego CG (2003) Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 118(2):379–386

    Article  CAS  PubMed  Google Scholar 

  • Vandresen-Filho S, de Araujo Herculano B, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45

    Article  CAS  PubMed  Google Scholar 

  • Vandresen-Filho S, Hoeller AA, Herculano BA, Duzzioni M, Duarte FS, Piermartiri TC, Boeck CC, de Lima TC, Marino-Neto J, Tasca CI (2013a) NMDA preconditioning attenuates cortical and hippocampal seizures induced by intracerebroventricular quinolinic acid infusion. Neurotox Res 24(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, Herculano BA, De Bem AF, Tasca CI (2013b) Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem Int 62(7):948–955

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Kawahara K, Kosugi T, Tanaka M (2006) Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem Res 31(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Zanatta L, Zamoner A, Goncalves R, Zanatta AP, Bouraima-Lelong H, Carreau S, Silva FR (2011) 1α,25-Dihydroxyvitamin D(3) signaling pathways on calcium uptake in 30-day-old rat Sertoli cells. Biochemistry 50(47):10284–10292

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang ZG, Liu XS, Hozeska-Solgot A, Chopp M (2007) The PI3K/Akt pathway mediates the neuroprotective effect of atorvastatin in extending thrombolytic therapy after embolic stroke in the rat. Arterioscler Thromb Vasc Biol 27(11):2470–2475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported by grants from the Brazilian funding agencies, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) – Projects IBN-Net # 01.06.0842-00 and INCT (Instituto Nacional de Ciência e Tecnologia) for Excitotoxicity and Neuroprotection and FAPESC (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina) – Project NENASC/PRONEX to C.I.T. CAPES, CNPq-Uni e FAPESC-Uni to F.R.M.B.S. C.I.T. is recipient of CNPq productivity fellowship and P.C.S. was recipient of PRODOC/CAPES post-doctoral scholarship.

Conflict of interest

The authors state no conflicts of interest. All authors have materially participated in the research and/or article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vandresen-Filho.

Additional information

S. Vandresen-Filho and P.C. Severino have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandresen-Filho, S., Severino, P.C., Constantino, L.C. et al. N-Methyl-d-aspartate Preconditioning Prevents Quinolinic Acid-Induced Deregulation of Glutamate and Calcium Homeostasis in Mice Hippocampus. Neurotox Res 27, 118–128 (2015). https://doi.org/10.1007/s12640-014-9496-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9496-6

Keywords

Navigation